Search For Supersymmetry Using Razor Variables In Events With B Tagged Jets In Pp Collisions At Sqrts

Download Search For Supersymmetry Using Razor Variables In Events With B Tagged Jets In Pp Collisions At Sqrts PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Search For Supersymmetry Using Razor Variables In Events With B Tagged Jets In Pp Collisions At Sqrts book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Search for Supersymmetry Using Razor Variables in Events with $b$-tagged Jets in $pp$ Collisions at $\sqrt{s}

An inclusive search for supersymmetry in events with at least one b-tagged jet is performed using proton-proton collision data collected by the CMS experiment in 2012 at a center-of-mass energy of 8 TeV. The data set size corresponds to an integrated luminosity of 19.3 fb-1. The two-dimensional distribution of the razor variables R2 and MR is studied in events with and without leptons. The data are found to be consistent with the expected background, which is modeled with an empirical function. Exclusion limits on supersymmetric particle masses at a 95% confidence level are derived in several simplified supersymmetric scenarios for several choices of the branching fractions. Also, by combining the likelihoods of a search in events without leptons and a search that requires a single lepton (electron or muon), an improved bound on the top-squark mass is obtained. By assuming the lightest supersymmetric particle to be stable and weakly interacting, and to have a mass of 100 GeV, the branching-fraction-dependent ( -independent) production of gluinos is excluded for gluino masses up to 1310 (1175) GeV. As a result, the corresponding limit for top-squark pair production is 730 (645) GeV.
Search for Supersymmetry with Razor Variables in Pp Collisions at $\sqrt{s}$

Here, the razor approach to search for R-parity conserving supersymmetric particles is described in detail. Two analyses are considered: an inclusive search for new heavy particle pairs decaying to final states with at least two jets and missing transverse energy, and a dedicated search for final states with at least one jet originating from a bottom quark. For both the inclusive study and the study requiring a bottom-quark jet, the data are examined in exclusive final states corresponding to all-hadronic, single-lepton, and dilepton events. The study is based on the data set of proton-proton collisions at √s = 7 TeV collected with the CMS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb-1. The study consists of a shape analysis performed in the plane of two kinematic variables, denoted MR and R2, that correspond to the mass and transverse energy flow, respectively, of pair-produced, heavy, new-physics particles. The data are found to be compatible with the background model, defined by studying event simulations and data control samples. Exclusion limits for squark and gluino production are derived in the context of the constrained minimal supersymmetric standard model (CMSSM) and also for simplified-model spectra (SMS). Within the CMSSM parameter space considered, squark and gluino masses up to 1350 GeV are excluded at 95% confidence level, depending on the model parameters. For SMS scenarios, the direct production of pairs of top or bottom squarks is excluded for masses as high as 400 GeV.
Search for Supersymmetry in Pp Collisions at Sqrt(s)

Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single, high transverse momentum lepton; multiple jets, including at least one b-tagged jet; and large missing transverse momentum. The data sample corresponds to an integrated luminosity of 2.3 inverse-femtobarns at sqrt(s) = 13 TeV, recorded by the CMS experiment at the LHC. The search focuses on processes leading to high jet multiplicities, such as gluino pair production with gluinos to t-tbar neutralino[1]. The quantity M[J], defined as the sum of the masses of the large-radius jets in the event, is used in conjunction with other kinematic variables to provide discrimination between signal and background and as a key part of the background estimation method. The observed event yields in the signal regions in data are consistent with those expected for standard model backgrounds, estimated from control regions in data. Exclusion limits are obtained for a simplified model corresponding to gluino pair production with three-body decays into top quarks and neutralinos. Gluinos with a mass below 1600 GeV are excluded at a 95% confidence level for scenarios with low neutralino[1] mass, and neutralinos with a mass below 800 GeV are excluded for a gluino mass of about 1300 GeV. For models with two-body gluino decays producing on-shell top squarks, the excluded region is only weakly sensitive to the top squark mass.