Search For Supersymmetry In The All Hadronic Final State Using Top Quark Tagging In Pp Collisions At Sqrt S

Download Search For Supersymmetry In The All Hadronic Final State Using Top Quark Tagging In Pp Collisions At Sqrt S PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Search For Supersymmetry In The All Hadronic Final State Using Top Quark Tagging In Pp Collisions At Sqrt S book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Search for Supersymmetry in the All-hadronic Final State Using Top Quark Tagging in Pp Collisions at Sqrt(s)

A search is presented for supersymmetry in all-hadronic events with missing transverse momentum based on tagging of top quarks. The data sample corresponds to an integrated luminosity of 2.3 inverse femtobarns of proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC. Search regions are defined using the properties of reconstructed jets, the presence of bottom and top quark candidates, and an imbalance in transverse momentum. With no statistically significant excess of events observed beyond the expected contributions from the standard model, we set exclusion limits at 95% confidence level on the masses of new particles in the context of simplified models of direct and gluino-mediated top squark production. For direct top squark production with decays to a top quark and a neutralino, top squark masses up to 740 GeV and neutralino masses up to 240 GeV are excluded. Gluino masses up to 1550 GeV and neutralino masses up to 900 GeV are excluded for models of gluino pair production where each gluino decays to a top-antitop quark pair and a neutralino.
QCD Radiation in Top-Antitop and Z+Jets Final States

This thesis contains new research in both experimental and theoretical particle physics, making important contributions in each. Two analyses of collision data from the ATLAS experiment at the LHC are presented, as well as two phenomenological studies of heavy coloured resonances that could be produced at the LHC. The first data analysis was the measurement of top quark-antiquark production with a veto on additional jet activity. As the first detector-corrected measurement of jet activity in top-antitop events it played an important role in constraining the theoretical modelling, and ultimately reduced these uncertainties for ATLAS's other top-quark measurements by a factor of two. The second data analysis was the measurement of Z+2jet production and the observation of the electroweak vector boson fusion (VBF) component. As the first observation of VBF at a hadron collider, this measurement demonstrated new techniques to reliably extract VBF processes and paved the way for future VBF Higgs measurements. The first phenomenological study developed a new technique for identifying the colour of heavy resonances produced in proton-proton collisions. As a by-product of this study an unexpected and previously unnoticed correlation was discovered between the probability of correctly identifying a high-energy top and the colour structure of the event it was produced in. The second phenomenological study explored this relationship in more detail, and could have important consequences for the identification of new particles that decay to top quarks.
Lepton Photon Interactions At High Energies (Lepton Photon 2017) - Proceedings Of The 28th International Symposium

The latest of the 'Lepton Photon' symposium, one of the well-established series of meetings in the high-energy physics community, was successfully organized at the South Campus of Sun Yat-sen University, Guangzhou, China, from August 7-12, 2017, where physicists around the world gathered to discuss the latest advancements in the research field.This proceedings volume of the Lepton Photon 2017 collects contributions by the plenary session speakers and the posters' presenters, which cover the latest results in particle physics, nuclear physics, astrophysics, cosmology, and plans for future facilities.