Schubert Calculus And Its Applications In Combinatorics And Representation Theory

Download Schubert Calculus And Its Applications In Combinatorics And Representation Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Schubert Calculus And Its Applications In Combinatorics And Representation Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Schubert Calculus and Its Applications in Combinatorics and Representation Theory

This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.
A Glimpse into Geometric Representation Theory

Author: Mahir Bilen Can
language: en
Publisher: American Mathematical Society
Release Date: 2024-08-07
This volume contains the proceedings of the AMS Special Session on Combinatorial and Geometric Representation Theory, held virtually on November 20–21, 2021. The articles offer an engaging look into recent advancements in geometric representation theory. Despite diverse subject matters, a common thread uniting the articles of this volume is the power of geometric methods. The authors explore the following five contemporary topics in geometric representation theory: equivariant motivic Chern classes; equivariant Hirzebruch classes and equivariant Chern-Schwartz-MacPherson classes of Schubert cells; locally semialgebraic spaces, Nash manifolds, and their superspace counterparts; support varieties of Lie superalgebras; wreath Macdonald polynomials; and equivariant extensions and solutions of the Deligne-Simpson problem. Each article provides a well-structured overview of its topic, highlighting the emerging theories developed by the authors and their colleagues.
Group Actions and Equivariant Cohomology

Author: Loring W. Tu
language: en
Publisher: American Mathematical Society
Release Date: 2024-11-26
This volume contains the proceedings of the virtual AMS Special Session on Equivariant Cohomology, held March 19?20, 2022. Equivariant topology is the algebraic topology of spaces with symmetries. At the meeting, ?equivariant cohomology? was broadly interpreted to include related topics in equivariant topology and geometry such as Bredon cohomology, equivariant cobordism, GKM (Goresky, Kottwitz, and MacPherson) theory, equivariant $K$-theory, symplectic geometry, and equivariant Schubert calculus. This volume offers a view of the exciting progress made in these fields in the last twenty years. Several of the articles are surveys suitable for a general audience of topologists and geometers. To be broadly accessible, all the authors were instructed to make their presentations somewhat expository. This collection should be of interest and useful to graduate students and researchers alike.