Scalable Ai And Design Patterns

Download Scalable Ai And Design Patterns PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Scalable Ai And Design Patterns book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Scalable AI and Design Patterns

Understand and apply the design patterns outlined in this book to design, develop, and deploy scalable AI solutions that meet your organization's needs and drive innovation in the era of intelligent automation. This book begins with an overview of scalable AI systems and the importance of design patterns in creating robust intelligent solutions. It covers fundamental concepts and techniques for achieving scalability in AI systems, including data engineering practices and strategies. The book also addresses scalable algorithms, models, infrastructure, and architecture considerations. Additionally, it discusses deployment, productionization, real-time and streaming data, edge computing, governance, and ethics in scalable AI. Real-world case studies and best practices are presented, along with insights into future trends and emerging technologies. The book focuses on scalable AI and design patterns, providing an understanding of the challenges involved in developing AI systems that can handle large amounts of data, complex algorithms, and real-time processing. By exploring scalability, you will be empowered to design and implement AI solutions that can adapt to changing data requirements. What You Will Learn Develop scalable AI systems that can handle large volumes of data, complex algorithms, and real-time processing Know the significance of design patterns in creating robust intelligent solutions Understand scalable algorithms and models to handle extensive data and computing requirements and build scalable AI systems Be aware of the ethical implications of scalable AI systems Who This Book Is For AI practitioners, data scientists, and software engineers with intermediate-level AI knowledge and experience
Machine Learning Design Patterns

Author: Valliappa Lakshmanan
language: en
Publisher: O'Reilly Media
Release Date: 2020-10-15
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly
Design Patterns for Cloud Native Applications

Author: Kasun Indrasiri
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2021-05-17
With the immense cost savings and scalability the cloud provides, the rationale for building cloud native applications is no longer in question. The real issue is how. With this practical guide, developers will learn about the most commonly used design patterns for building cloud native applications using APIs, data, events, and streams in both greenfield and brownfield development. You'll learn how to incrementally design, develop, and deploy large and effective cloud native applications that you can manage and maintain at scale with minimal cost, time, and effort. Authors Kasun Indrasiri and Sriskandarajah Suhothayan highlight use cases that effectively demonstrate the challenges you might encounter at each step. Learn the fundamentals of cloud native applications Explore key cloud native communication, connectivity, and composition patterns Learn decentralized data management techniques Use event-driven architecture to build distributed and scalable cloud native applications Explore the most commonly used patterns for API management and consumption Examine some of the tools and technologies you'll need for building cloud native systems