Scala For The Impatient 3rd Edition Pdf


Download Scala For The Impatient 3rd Edition Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Scala For The Impatient 3rd Edition Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Scala Cookbook


Scala Cookbook

Author: Alvin Alexander

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2013-08-01


DOWNLOAD





Save time and trouble when using Scala to build object-oriented, functional, and concurrent applications. With more than 250 ready-to-use recipes and 700 code examples, this comprehensive cookbook covers the most common problems you’ll encounter when using the Scala language, libraries, and tools. It’s ideal not only for experienced Scala developers, but also for programmers learning to use this JVM language. Author Alvin Alexander (creator of DevDaily.com) provides solutions based on his experience using Scala for highly scalable, component-based applications that support concurrency and distribution. Packed with real-world scenarios, this book provides recipes for: Strings, numeric types, and control structures Classes, methods, objects, traits, and packaging Functional programming in a variety of situations Collections covering Scala's wealth of classes and methods Concurrency, using the Akka Actors library Using the Scala REPL and the Simple Build Tool (SBT) Web services on both the client and server sides Interacting with SQL and NoSQL databases Best practices in Scala development

Scala for Machine Learning


Scala for Machine Learning

Author: Patrick R. Nicolas

language: en

Publisher: Packt Publishing Ltd

Release Date: 2017-09-26


DOWNLOAD





Leverage Scala and Machine Learning to study and construct systems that can learn from data About This Book Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulation, and updated source code in Scala Take your expertise in Scala programming to the next level by creating and customizing AI applications Experiment with different techniques and evaluate their benefits and limitations using real-world applications in a tutorial style Who This Book Is For If you're a data scientist or a data analyst with a fundamental knowledge of Scala who wants to learn and implement various Machine learning techniques, this book is for you. All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book! What You Will Learn Build dynamic workflows for scientific computing Leverage open source libraries to extract patterns from time series Write your own classification, clustering, or evolutionary algorithm Perform relative performance tuning and evaluation of Spark Master probabilistic models for sequential data Experiment with advanced techniques such as regularization and kernelization Dive into neural networks and some deep learning architecture Apply some basic multiarm-bandit algorithms Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters Apply key learning strategies to a technical analysis of financial markets In Detail The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naive Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You'll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala. Style and approach This book is designed as a tutorial with hands-on exercises using technical analysis of financial markets and corporate data. The approach of each chapter is such that it allows you to understand key concepts easily.

Effective Java


Effective Java

Author: Joshua Bloch

language: en

Publisher: Addison-Wesley Professional

Release Date: 2008-05-08


DOWNLOAD





Are you looking for a deeper understanding of the JavaTM programming language so that you can write code that is clearer, more correct, more robust, and more reusable? Look no further! Effective JavaTM, Second Edition, brings together seventy-eight indispensable programmer’s rules of thumb: working, best-practice solutions for the programming challenges you encounter every day. This highly anticipated new edition of the classic, Jolt Award-winning work has been thoroughly updated to cover Java SE 5 and Java SE 6 features introduced since the first edition. Bloch explores new design patterns and language idioms, showing you how to make the most of features ranging from generics to enums, annotations to autoboxing. Each chapter in the book consists of several “items” presented in the form of a short, standalone essay that provides specific advice, insight into Java platform subtleties, and outstanding code examples. The comprehensive descriptions and explanations for each item illuminate what to do, what not to do, and why. Highlights include: New coverage of generics, enums, annotations, autoboxing, the for-each loop, varargs, concurrency utilities, and much more Updated techniques and best practices on classic topics, including objects, classes, libraries, methods, and serialization How to avoid the traps and pitfalls of commonly misunderstood subtleties of the language Focus on the language and its most fundamental libraries: java.lang, java.util, and, to a lesser extent, java.util.concurrent and java.io Simply put, Effective JavaTM, Second Edition, presents the most practical, authoritative guidelines available for writing efficient, well-designed programs.