Sampling In Combinatorial And Geometric Set Systems


Download Sampling In Combinatorial And Geometric Set Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sampling In Combinatorial And Geometric Set Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Sampling in Combinatorial and Geometric Set Systems


Sampling in Combinatorial and Geometric Set Systems

Author: Nabil H. Mustafa

language: en

Publisher: American Mathematical Society

Release Date: 2022-01-14


DOWNLOAD





Understanding the behavior of basic sampling techniques and intrinsic geometric attributes of data is an invaluable skill that is in high demand for both graduate students and researchers in mathematics, machine learning, and theoretical computer science. The last ten years have seen significant progress in this area, with many open problems having been resolved during this time. These include optimal lower bounds for epsilon-nets for many geometric set systems, the use of shallow-cell complexity to unify proofs, simpler and more efficient algorithms, and the use of epsilon-approximations for construction of coresets, to name a few. This book presents a thorough treatment of these probabilistic, combinatorial, and geometric methods, as well as their combinatorial and algorithmic applications. It also revisits classical results, but with new and more elegant proofs. While mathematical maturity will certainly help in appreciating the ideas presented here, only a basic familiarity with discrete mathematics, probability, and combinatorics is required to understand the material.

Recovery Methodologies: Regularization and Sampling


Recovery Methodologies: Regularization and Sampling

Author: Willi Freeden

language: en

Publisher: American Mathematical Society

Release Date: 2023-08-21


DOWNLOAD





The goal of this book is to introduce the reader to methodologies in recovery problems for objects, such as functions and signals, from partial or indirect information. The recovery of objects from a set of data demands key solvers of inverse and sampling problems. Until recently, connections between the mathematical areas of inverse problems and sampling were rather tenuous. However, advances in several areas of mathematical research have revealed deep common threads between them, which proves that there is a serious need for a unifying description of the underlying mathematical ideas and concepts. Freeden and Nashed present an integrated approach to resolution methodologies from the perspective of both these areas. Researchers in sampling theory will benefit from learning about inverse problems and regularization methods, while specialists in inverse problems will gain a better understanding of the point of view of sampling concepts. This book requires some basic knowledge of functional analysis, Fourier theory, geometric number theory, constructive approximation, and special function theory. By avoiding extreme technicalities and elaborate proof techniques, it is an accessible resource for students and researchers not only from applied mathematics, but also from all branches of engineering and science.

Algebras, Lattices, Varieties


Algebras, Lattices, Varieties

Author: Ralph S. Freese

language: en

Publisher: American Mathematical Society

Release Date: 2022-11-03


DOWNLOAD





This book is the third of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.