Run Time Models For Self Managing Systems And Applications

Download Run Time Models For Self Managing Systems And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Run Time Models For Self Managing Systems And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Run-time Models for Self-managing Systems and Applications

Author: Danilo Ardagna
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-11-15
The complexity of Information Technology (IT) systems has been steadily incre- ing in the past decades. In October 2001, IBM released the “Autonomic Computing Manifesto” observing that current applications have reached the size of millions of lines of code, while physical infrastructures include thousands of heterogeneous servers requiring skilled IT professionals to install, con?gure, tune, and maintain. System complexity has been recognized as the main obstacle to the further advan- ment of IT technology. The basic idea of Autonomic Computing is to develop IT systems that are able to manage themselves, as the human autonomic nervous system governs basic body functions such as heart rate or body temperature, thus freeing the conscious brain— IT administrators—from the burden of dealing with low-level vital functions. Autonomic Computing systems can be implemented by introducing autonomic controllers which continuously monitor, analyze, plan, and execute (the famous MAPE cycle) recon?guration actions on the system components. Monitoring acti- ties are deployed to measure the workload and performance metrics of each running component so as to identify system faults. The goal of the analysis activities is to determine the status of components from the monitoring data, and to forecast - ture conditions based on historical observations. Finally, plan and execute activities aim at deciding and actuating the next system con?guration, for example, deciding whether to accept or reject new requests, determining the best application to servers assignment, in order to the achieve the self-optimization goals.
Advances in Swarm Intelligence

This book constitutes the proceedings of the 11th International Conference on Advances in Swarm Intelligence, ICSI 2020, held in July 2020 in Belgrade, Serbia. Due to the COVID-19 pandemic the conference was held virtually. The 63 papers included in this volume were carefully reviewed and selected from 127 submissions. The papers are organized in 12 cohesive topical sections as follows: Swarm intelligence and nature-inspired computing; swarm-based computing algorithms for optimization; particle swarm optimization; ant colony optimization; brain storm optimization algorithm; bacterial foraging optimization; genetic algorithm and evolutionary computation; multi-objective optimization; machine learning; data mining; multi-agent system and robotic swarm, and other applications.
[email protected]

Traditionally, research on model-driven engineering (MDE) has mainly focused on the use of models at the design, implementation, and verification stages of development. This work has produced relatively mature techniques and tools that are currently being used in industry and academia. However, software models also have the potential to be used at runtime, to monitor and verify particular aspects of runtime behavior, and to implement self-* capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing systems). A key benefit of using models at runtime is that they can provide a richer semantic base for runtime decision-making related to runtime system concerns associated with autonomic and adaptive systems. This book is one of the outcomes of the Dagstuhl Seminar 11481 on [email protected] held in November/December 2011, discussing foundations, techniques, mechanisms, state of the art, research challenges, and applications for the use of runtime models. The book comprises four research roadmaps, written by the original participants of the Dagstuhl Seminar over the course of two years following the seminar, and seven research papers from experts in the area. The roadmap papers provide insights to key features of the use of runtime models and identify the following research challenges: the need for a reference architecture, uncertainty tackled by runtime models, mechanisms for leveraging runtime models for self-adaptive software, and the use of models at runtime to address assurance for self-adaptive systems.