Run Related Probability Functions And Their Application To Industrial Statistics

Download Run Related Probability Functions And Their Application To Industrial Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Run Related Probability Functions And Their Application To Industrial Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Run Related Probability Functions and their Application to Industrial Statistics

Author: Galit Shmueli
language: en
Publisher: Axelrod Schnall Publishers
Release Date: 2000-06-01
Various procedures that are used in the field of industrial statistics, include switching/stopping rules between different levels of inspection. These rules are usually based on a sequence of previous inspections, and involve the concept of runs. A run is a sequence of identical events, such as a sequence of successes in a slot machine. However, waiting for a run to occur is not merely a superstitious act. In quality control, as in many other fields (e.g. reliability of engineering systems, DNA sequencing, psychology, ecology, and radar astronomy), the concept of runs is widely applied as the underlying basis for many rules. Rules that are based on the concept of runs, or "run-rules", are very intuitive and simple to apply (for example: "use reduced inspection following a run of 5 acceptable batches"). In fact, in many cases they are designed according to empirical rather than probabilistic considerations. Therefore, there is a need to investigate their theoretical properties and to assess their performance in light of practical requirements. In order to investigate the properties of such systems their complete probabilistic structure should be revealed. Various authors addressed the occurrence of runs from a theoretical point of view, with no regard to the field of industrial statistics or quality control. The main problem has been to specify the exact probability functions of variables which are related to runs. This problem was tackled by different methods (especially for the family of "order k distributions"), some of them leading to expressions for the probability function. In this work we present a method for computing the exact probability functions of variables which originate in systems with switching or stopping rules that are based on runs (including k-order variables as a special case). We use Feller's (1968) methods for obtaining the probability generating functions of run related variables, as well as for deriving the closed form of the probability function from its generating function by means of partial fraction expansion. We generalize Feller's method for other types of distributions that are based on runs, and that are encountered in the field of industrial statistics. We overcome the computational complexity encountered by Feller for computing the exact probability function, using efficient numerical methods for finding the roots of polynomials, simple recursive formulas, and popular mathematical software packages (e.g. Matlab and Mathematica). We then assess properties of some systems with switching/stopping run rules, and propose modifications to such rules.
Probability Distributions Used in Reliability Engineering

The book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering.