Role Of Explainable Artificial Intelligence In E Commerce


Download Role Of Explainable Artificial Intelligence In E Commerce PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Role Of Explainable Artificial Intelligence In E Commerce book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Role of Explainable Artificial Intelligence in E-Commerce


Role of Explainable Artificial Intelligence in E-Commerce

Author: Loveleen Gaur

language: en

Publisher: Springer Nature

Release Date: 2024-04-25


DOWNLOAD





The technological boom has provided consumers with endless choices, removing the hindrance of time and place. Understanding the dynamic and competitive business environment, marketers know they need to reinforce indestructible customer experience with the support of algorithmic configurations to minimize human intrusion. World Wide Web (WWW) and online marketing have changed the way of conducting business; with artificial intelligence (AI), business houses can furnish a customized experience to fulfil the perceived expectation of the customer. Artificial intelligence bridges the gap between business and prospective clients, provides enormous amounts of information, prompts grievance redressal system, and further complements the client’s preference. The opportunities online marketing offers with the blend of artificial intelligence tools like chatbots, recommenders, virtual assistance, and interactive voice recognition create improved brand awareness, better customer relationshipmarketing, and personalized product modification. Explainable AI provides the subsequent arena of human–machine collaboration, which will complement and support marketers and people so that they can make better, faster, and more accurate decisions. According to PwC’s report on Explainable AI(XAI), AI will have $15.7 trillion of opportunity by 2030. However, as AI tools become more advanced, more computations are done in a “black box” that humans can hardly comprehend. But the rise of AI in business for actionable insights also poses the following questions: How can marketers know and trust the reasoning behind why an AI system is making recommendations for action? What are the root causes and steering factors? Thus, transparency, trust, and a good understanding of expected business outcomes are increasingly demanded.

Knowledge Graphs for Explainable Artificial Intelligence: Foundations, Applications and Challenges


Knowledge Graphs for Explainable Artificial Intelligence: Foundations, Applications and Challenges

Author: Ilaria Tiddi

language: en

Publisher:

Release Date: 2020


DOWNLOAD





The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.

Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning


Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning

Author: Goel, Pawan Kumar

language: en

Publisher: IGI Global

Release Date: 2024-08-22


DOWNLOAD





In the landscape of e-commerce, data security has become a concern as businesses navigate the complexities of sensitive customer information protection and cyber threat mitigation. Strategies involving cloud computing, blockchain technology, artificial intelligence, and machine learning offer solutions to strengthen data security and ensure transactional integrity. Implementing these technologies requires a balance of innovation and efficient security protocols. The development and adoption of security strategies is necessary to positively integrate cutting-edge technologies for effective security in online business. Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning addresses the need for advanced security measures, while examining the current state of e-commerce data security. It explores strategies such as cloud computing, blockchain, artificial intelligence, and machine learning. This book covers topics such as cybersecurity, cloud technology, and forensics, and is a useful resource for computer engineers, business owners, security professionals, government officials, academicians, scientists, and researchers.