Robust Statistics Data Analysis And Computer Intensive Methods


Download Robust Statistics Data Analysis And Computer Intensive Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robust Statistics Data Analysis And Computer Intensive Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Robust Statistics, Data Analysis, and Computer Intensive Methods


Robust Statistics, Data Analysis, and Computer Intensive Methods

Author: Helmut Rieder

language: en

Publisher:

Release Date: 1995-12-22


DOWNLOAD





Robust Statistics, Data Analysis, and Computer Intensive Methods


Robust Statistics, Data Analysis, and Computer Intensive Methods

Author: Helmut Rieder

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





To celebrate Peter Huber's 60th birthday in 1994, our university had invited for a festive occasion in the afternoon of Thursday, June 9. The invitation to honour this outstanding personality was followed by about fifty colleagues and former students from, mainly, allover the world. Others, who could not attend, sent their congratulations by mail and e-mail (P. Bickel:" ... It's hard to imagine that Peter turned 60 ... "). After a welcome address by Adalbert Kerber (dean), the following lectures were delivered. Volker Strassen (Konstanz): Almost Sure Primes and Cryptography -an Introduction Frank Hampel (Zurich): On the Philosophical Foundations of Statistics 1 Andreas Buja (Murray Hill): Projections and Sections High-Dimensional Graphics for Data Analysis. The distinguished speakers lauded Peter Huber a hard and fair mathematician, a cooperative and stimulating colleague, and an inspiring and helpful teacher. The Festkolloquium was surrounded with a musical program by the Univer 2 sity's Brass Ensemble. The subsequent Workshop "Robust Statistics, Data Analysis and Computer Intensive Methods" in Schloss Thurnau, Friday until Sunday, June 9-12, was organized about the areas in statistics that Peter Huber himself has markedly shaped. In the time since the conference, most of the contributions could be edited for this volume-a late birthday present-that may give a new impetus to further research in these fields.

Robust Statistics


Robust Statistics

Author: Ricardo A. Maronna

language: en

Publisher: John Wiley & Sons

Release Date: 2019-01-04


DOWNLOAD





A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.