Robust Regression Equation


Download Robust Regression Equation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robust Regression Equation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Robust Regression


Robust Regression

Author: Kenneth D. Lawrence

language: en

Publisher: Routledge

Release Date: 2019-05-20


DOWNLOAD





Robust Regression: Analysis and Applications characterizes robust estimators in terms of how much they weight each observation discusses generalized properties of Lp-estimators. Includes an algorithm for identifying outliers using least absolute value criterion in regression modeling reviews redescending M-estimators studies Li linear regression proposes the best linear unbiased estimators for fixed parameters and random errors in the mixed linear model summarizes known properties of Li estimators for time series analysis examines ordinary least squares, latent root regression, and a robust regression weighting scheme and evaluates results from five different robust ridge regression estimators.

Robust Methods in Regression Analysis – Theory and Application


Robust Methods in Regression Analysis – Theory and Application

Author: Robert Finger

language: en

Publisher: GRIN Verlag

Release Date: 2007-05-06


DOWNLOAD





Diploma Thesis from the year 2006 in the subject Mathematics - Statistics, grade: 1.3, European University Viadrina Frankfurt (Oder) (Wirtschaftswissenschaftliche Fakultät), language: English, abstract: Regression Analysis is an important statistical tool for many applications. The most frequently used approach to Regression Analysis is the method of Ordinary Least Squares. But this method is vulnerable to outliers; even a single outlier can spoil the estimation completely. How can this vulnerability be described by theoretical concepts and are there alternatives? This thesis gives an overview over concepts and alternative approaches. The three fundamental approaches to Robustness (qualitative-, infinitesimal- and quantitative Robustness) are introduced in this thesis and are applied to different estimators. The estimators under study are measures of location, scale and regression. The Robustness approaches are important for the theoretical judgement of certain estimators but as well for the development of alternatives to classical estimators. This thesis focuses on the (Robustness-) performance of estimators if outliers occur within the data set. Measures of location and scale provide necessary steppingstones into the topic of Regression Analysis. In particular the median and trimming approaches are found to produce very robust results. These results are used in Regression Analysis to find alternatives to the method of Ordinary Least Squares. Its vulnerability can be overcome by applying the methods of Least Median of Squares or Least Trimmed Squares. Different outlier diagnostic tools are introduced to improve the poor efficiency of these Regression Techniques. Furthermore, this thesis delivers a simulation of some Regression Techniques on different situations in Regression Analysis. This simulation focuses in particular on changes in regression estimates if outliers occur in the data. Theoretically derived results as well as the results of the simulation lead to the recommendation of the method of Reweighted Least Squares. Applying this method frequently on problems of Regression Analysis provides outlier resistant and efficient estimates.

Applied Regression Models in the Social Sciences


Applied Regression Models in the Social Sciences

Author: Dudley L. Poston, Jr

language: en

Publisher: Cambridge University Press

Release Date: 2023-08-17


DOWNLOAD





This accessible and practical textbook gives students the perfect guide to the use of regression models in testing and evaluating hypotheses dealing with social relationships. A range of statistical methods suited to a wide variety of dependent variables is explained, which will allow students to read, understand, and interpret complex statistical analyses of social data. Each chapter contains example applications using relevant statistical methods in both Stata and R, giving students direct experience of applying their knowledge. A full suite of online resources - including statistical command files, datasets and results files, homework assignments, class discussion topics, PowerPoint slides, and exam questions - supports the student to work independently with the data, and the instructor to deliver the most effective possible course. This is the ideal textbook for advanced undergraduate and beginning graduate students taking courses in applied social statistics.