Robust Optimization Directed Design


Download Robust Optimization Directed Design PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robust Optimization Directed Design book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Robust Optimization-Directed Design


Robust Optimization-Directed Design

Author: Andrew J. Kurdila

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-06-04


DOWNLOAD





Robust design—that is, managing design uncertainties such as model uncertainty or parametric uncertainty—is the often unpleasant issue crucial in much multidisciplinary optimal design work. Recently, there has been enormous practical interest in strategies for applying optimization tools to the development of robust solutions and designs in several areas, including aerodynamics, the integration of sensing (e.g., laser radars, vision-based systems, and millimeter-wave radars) and control, cooperative control with poorly modeled uncertainty, cascading failures in military and civilian applications, multi-mode seekers/sensor fusion, and data association problems and tracking systems. The contributions to this book explore these different strategies. The expression "optimization-directed” in this book’s title is meant to suggest that the focus is not agonizing over whether optimization strategies identify a true global optimum, but rather whether these strategies make significant design improvements.

Robust Optimization


Robust Optimization

Author: Aharon Ben-Tal

language: en

Publisher: Princeton University Press

Release Date: 2009-08-10


DOWNLOAD





Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.

Robustness Optimization for IoT Topology


Robustness Optimization for IoT Topology

Author: Tie Qiu

language: en

Publisher: Springer Nature

Release Date: 2022-06-11


DOWNLOAD





The IoT topology defines the way various components communicate with each other within a network. Topologies can vary greatly in terms of security, power consumption, cost, and complexity. Optimizing the IoT topology for different applications and requirements can help to boost the network’s performance and save costs. More importantly, optimizing the topology robustness can ensure security and prevent network failure at the foundation level. In this context, this book examines the optimization schemes for topology robustness in the IoT, helping readers to construct a robustness optimization framework, from self-organizing to intelligent networking. The book provides the relevant theoretical framework and the latest empirical research on robustness optimization of IoT topology. Starting with the self-organization of networks, it gradually moves to genetic evolution. It also discusses the application of neural networks and reinforcement learning to endow the node with self-learning ability to allow intelligent networking. This book is intended for students, practitioners, industry professionals, and researchers who are eager to comprehend the vulnerabilities of IoT topology. It helps them to master the research framework for IoT topology robustness optimization and to build more efficient and reliable IoT topologies in their industry.