Robust Multimodal Cognitive Load Measurement

Download Robust Multimodal Cognitive Load Measurement PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robust Multimodal Cognitive Load Measurement book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Robust Multimodal Cognitive Load Measurement

This book explores robust multimodal cognitive load measurement with physiological and behavioural modalities, which involve the eye, Galvanic Skin Response, speech, language, pen input, mouse movement and multimodality fusions. Factors including stress, trust, and environmental factors such as illumination are discussed regarding their implications for cognitive load measurement. Furthermore, dynamic workload adjustment and real-time cognitive load measurement with data streaming are presented in order to make cognitive load measurement accessible by more widespread applications and users. Finally, application examples are reviewed demonstrating the feasibility of multimodal cognitive load measurement in practical applications. This is the first book of its kind to systematically introduce various computational methods for automatic and real-time cognitive load measurement and by doing so moves the practical application of cognitive load measurement from the domain of the computer scientist and psychologist to more general end-users, ready for widespread implementation. Robust Multimodal Cognitive Load Measurement is intended for researchers and practitioners involved with cognitive load studies and communities within the computer, cognitive, and social sciences. The book will especially benefit researchers in areas like behaviour analysis, social analytics, human-computer interaction (HCI), intelligent information processing, and decision support systems.
Cognitive Load Measurement and Application

Cognitive Load Measurement and Application provides up-to-date research and theory on the functional role of cognitive load measurement and its application in multimedia and visual learning. Grounded in a sound theoretical framework, this edited volume introduces methodologies and strategies that effect high-quality cognitive load measurement in learning. Case studies are provided to aid readers in comprehension and application within various learning situations, and the book concludes with a review of the possible future directions of the discipline.
The Handbook of Multimodal-Multisensor Interfaces, Volume 2

The Handbook of Multimodal-Multisensor Interfaces provides the first authoritative resource on what has become the dominant paradigm for new computer interfaces: user input involving new media (speech, multi-touch, hand and body gestures, facial expressions, writing) embedded in multimodal-multisensor interfaces that often include biosignals. This edited collection is written by international experts and pioneers in the field. It provides a textbook, reference, and technology roadmap for professionals working in this and related areas. This second volume of the handbook begins with multimodal signal processing, architectures, and machine learning. It includes recent deep learning approaches for processing multisensorial and multimodal user data and interaction, as well as context-sensitivity. A further highlight is processing of information about users' states and traits, an exciting emerging capability in next-generation user interfaces. These chapters discuss real-time multimodal analysis of emotion and social signals from various modalities, and perception of affective expression by users. Further chapters discuss multimodal processing of cognitive state using behavioral and physiological signals to detect cognitive load, domain expertise, deception, and depression. This collection of chapters provides walk-through examples of system design and processing, information on tools and practical resources for developing and evaluating new systems, and terminology and tutorial support for mastering this rapidly expanding field. In the final section of this volume, experts exchange views on the timely and controversial challenge topic of multimodal deep learning. The discussion focuses on how multimodal-multisensor interfaces are most likely to advance human performance during the next decade.