Robust Filtering Schemes For Machine Learning Systems To Defend Adversarial Attacks

Download Robust Filtering Schemes For Machine Learning Systems To Defend Adversarial Attacks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robust Filtering Schemes For Machine Learning Systems To Defend Adversarial Attacks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Robust Filtering Schemes for Machine Learning Systems to Defend Adversarial Attacks

Defenses against adversarial attacks are essential to ensure the reliability of machine learning models as their applications are expanding in different domains. Existing ML defense techniques have several limitations in practical use. I proposed a trustworthy framework that employs an adaptive strategy to inspect both inputs and decisions. In particular, data streams are examined by a series of diverse filters before sending to the learning system and then crossed checked its output through a diverse set of filters before making the final decision. My experimental results illustrated that the proposed active learning-based defense strategy could mitigate adaptive or advanced adversarial manipulations both in input and after with the model decision for a wide range of ML attacks by higher accuracy. Moreover, the output decision boundary inspection using a classification technique automatically reaffirms the reliability and increases the trustworthiness of any ML-Based decision support system. Unlike other defense strategies, my defense technique does not require adversarial sample generation, and updating the decision boundary for detection makes the defense systems robust to traditional adaptive attacks.
Robust Filtering Schemes for Machine Learning Systems to Defend Adversarial Attack

Defenses against adversarial attacks are essential to ensure the reliability of machine learning models as their applications are expanding in different domains. Existing ML defense techniques have several limitations in practical use. I proposed a trustworthy framework that employs an adaptive strategy to inspect both inputs and decisions. In particular, data streams are examined by a series of diverse filters before sending to the learning system and then crossed checked its output through a diverse set of filters before making the final decision. My experimental results illustrated that the proposed active learning-based defense strategy could mitigate adaptive or advanced adversarial manipulations both in input and after with the model decision for a wide range of ML attacks by higher accuracy. Moreover, the output decision boundary inspection using a classification technique automatically reaffirms the reliability and increases the trustworthiness of any ML-Based decision support system. Unlike other defense strategies, my defense technique does not require adversarial sample generation, and updating the decision boundary for detection makes the defense systems robust to traditional adaptive attacks..
Robust Machine Learning

Today, machine learning algorithms are often distributed across multiple machines to leverage more computing power and more data. However, the use of a distributed framework entails a variety of security threats. In particular, some of the machines may misbehave and jeopardize the learning procedure. This could, for example, result from hardware and software bugs, data poisoning or a malicious player controlling a subset of the machines. This book explains in simple terms what it means for a distributed machine learning scheme to be robust to these threats, and how to build provably robust machine learning algorithms. Studying the robustness of machine learning algorithms is a necessity given the ubiquity of these algorithms in both the private and public sectors. Accordingly, over the past few years, we have witnessed a rapid growth in the number of articles published on the robustness of distributed machine learning algorithms. We believe it is time to provide a clear foundation to this emerging and dynamic field. By gathering the existing knowledge and democratizing the concept of robustness, the book provides the basis for a new generation of reliable and safe machine learning schemes. In addition to introducing the problem of robustness in modern machine learning algorithms, the book will equip readers with essential skills for designing distributed learning algorithms with enhanced robustness. Moreover, the book provides a foundation for future research in this area.