Robust Bayesian Analysis For Econometrics


Download Robust Bayesian Analysis For Econometrics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robust Bayesian Analysis For Econometrics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Robust Bayesian Analysis


Robust Bayesian Analysis

Author: David Rios Insua

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con cerns foundational aspects and describes decision-theoretical axiomatisa tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.

Robust Bayesian Analysis for Econometrics


Robust Bayesian Analysis for Econometrics

Author: Raffaella Giacomini

language: en

Publisher:

Release Date: 2021


DOWNLOAD





We review the literature on robust Bayesian analysis as a tool for global sensitivity analysis and for statistical decision-making under ambiguity. We discuss the methods proposed in the literature, including the different ways of constructing the set of priors that are the key input of the robust Bayesian analysis. We consider both a general set-up for Bayesian statistical decisions and inference and the special case of set-identified structural models. We provide new results that can be used to derive and compute the set of posterior moments for sensitivity analysis and to compute the optimal statistical decision under multiple priors. The paper ends with a self-contained discussion of three different approaches to robust Bayesian inference for setidentified structural vector autoregressions, including details about numerical implementation and an empirical illustration.

Robust Bayesian Inference for Econometrics


Robust Bayesian Inference for Econometrics

Author: Raffaella Giacomini

language: en

Publisher:

Release Date: 2021


DOWNLOAD





We review the literature on robust Bayesian analysis as a tool for global sensitivity analysis and for statistical decision-making under ambiguity. We discuss the methods proposed in the literature, including the different ways of constructing the set of priors that are the key input of the robust Bayesian analysis. We consider both a general set-up for Bayesian statistical decisions and inference and the special case of set-identified structural models. We provide new results that can be used to derive and compute the set of posterior moments for sensitivity analysis and to compute the optimal statistical decision under multiple priors. The paper ends with a self-contained discussion of three different approaches to robust Bayesian inference for set-identified structural vector autoregressions, including details about numerical implementation and an empirical illustration.