Robust Automatic Speech Recognition

Download Robust Automatic Speech Recognition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Robust Automatic Speech Recognition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Robust Automatic Speech Recognition

Robust Automatic Speech Recognition: A Bridge to Practical Applications establishes a solid foundation for automatic speech recognition that is robust against acoustic environmental distortion. It provides a thorough overview of classical and modern noise-and reverberation robust techniques that have been developed over the past thirty years, with an emphasis on practical methods that have been proven to be successful and which are likely to be further developed for future applications.The strengths and weaknesses of robustness-enhancing speech recognition techniques are carefully analyzed. The book covers noise-robust techniques designed for acoustic models which are based on both Gaussian mixture models and deep neural networks. In addition, a guide to selecting the best methods for practical applications is provided.The reader will: - Gain a unified, deep and systematic understanding of the state-of-the-art technologies for robust speech recognition - Learn the links and relationship between alternative technologies for robust speech recognition - Be able to use the technology analysis and categorization detailed in the book to guide future technology development - Be able to develop new noise-robust methods in the current era of deep learning for acoustic modeling in speech recognition - The first book that provides a comprehensive review on noise and reverberation robust speech recognition methods in the era of deep neural networks - Connects robust speech recognition techniques to machine learning paradigms with rigorous mathematical treatment - Provides elegant and structural ways to categorize and analyze noise-robust speech recognition techniques - Written by leading researchers who have been actively working on the subject matter in both industrial and academic organizations for many years
Robustness in Automatic Speech Recognition

The domain of speech processing has come to the point where researchers and engineers are concerned with how speech technology can be applied to new products, and how this technology will transform our future. One important problem is to improve robustness of speech processing under adverse conditions, which is the subject of this book. Robust speech processing is a relatively new area which became a concern as technology started moving from laboratory to field applications. A method or an algorithm is robust if it can deal with a broad range of applications and adapt to unknown conditions. Robustness in Automatic Speech Recognition addresses all of the fundamental problems and issues in the area. The book is divided into three parts. The first provides the background necessary for understanding the rest of the material. It also emphasizes the problems of speech production and perception in noise along with popular techniques used in speech analysis and automatic speech recognition. Part Two discusses the problems relevant to robustness in automatic speech recognition and speech-based applications. It emphasizes intra- and inter-speaker variability as well as automatic speech recognition of Lombard, noisy and channel distorted speech. Finally, the third part covers recent advances in the field of robust automatic speech recognition. Audience: An invaluable reference. May be used as a text for advanced courses on the subject.
Audio Source Separation and Speech Enhancement

Author: Emmanuel Vincent
language: en
Publisher: John Wiley & Sons
Release Date: 2018-10-22
Learn the technology behind hearing aids, Siri, and Echo Audio source separation and speech enhancement aim to extract one or more source signals of interest from an audio recording involving several sound sources. These technologies are among the most studied in audio signal processing today and bear a critical role in the success of hearing aids, hands-free phones, voice command and other noise-robust audio analysis systems, and music post-production software. Research on this topic has followed three convergent paths, starting with sensor array processing, computational auditory scene analysis, and machine learning based approaches such as independent component analysis, respectively. This book is the first one to provide a comprehensive overview by presenting the common foundations and the differences between these techniques in a unified setting. Key features: Consolidated perspective on audio source separation and speech enhancement. Both historical perspective and latest advances in the field, e.g. deep neural networks. Diverse disciplines: array processing, machine learning, and statistical signal processing. Covers the most important techniques for both single-channel and multichannel processing. This book provides both introductory and advanced material suitable for people with basic knowledge of signal processing and machine learning. Thanks to its comprehensiveness, it will help students select a promising research track, researchers leverage the acquired cross-domain knowledge to design improved techniques, and engineers and developers choose the right technology for their target application scenario. It will also be useful for practitioners from other fields (e.g., acoustics, multimedia, phonetics, and musicology) willing to exploit audio source separation or speech enhancement as pre-processing tools for their own needs.