Riveted Lap Joints In Aircraft Fuselage

Download Riveted Lap Joints In Aircraft Fuselage PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Riveted Lap Joints In Aircraft Fuselage book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Riveted Lap Joints in Aircraft Fuselage

Author: Andrzej Skorupa
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-06-23
Fatigue of the pressurized fuselages of transport aircraft is a significant problem all builders and users of aircraft have to cope with for reasons associated with assuring a sufficient lifetime and safety, and formulating adequate inspection procedures. These aspects are all addressed in various formal protocols for creating and maintaining airworthiness, including damage tolerance considerations. In most transport aircraft, fatigue occurs in lap joints, sometimes leading to circumstances that threaten safety in critical ways. The problem of fatigue of lap joints has been considerably enlarged by the goal of extending aircraft lifetimes. Fatigue of riveted lap joints between aluminium alloy sheets, typical of the pressurized aircraft fuselage, is the major topic of the present book. The richly illustrated and well-structured chapters treat subjects such as: structural design solutions and loading conditions for fuselage skin joints; relevance of laboratory test results for simple lap joint specimens to riveted joints in a real structure; effect of various production and design related variables on the riveted joint fatigue behaviour; analytical and experimental results on load transmission in mechanically fastened lap joints; theoretical and experimental analysis of secondary bending and its implications for riveted joint fatigue performance; nucleation and shape development of fatigue cracks in riveted longitudinal lap joints; overview of experimental investigations into the multi-site damage for full scale fuselage panels and riveted lap joint specimens; fatigue crack growth and fatigue life prediction methodology for riveted lap joints; residual strength predictions for riveted lap joints in a fuselage structure. The major issues of each chapter are recapitulated in the last section.
A Finite Element and Experimental Investigation on the Fatigue of Riveted Lap Joints in Aircraft Applications

Aircraft fuselage skin panels are joined together by rivets. The initiation and propagation of fatigue cracks in aircraft structures at and around the rivet/skin interface is directly related to residual stress field induced during the riveting process and subsequent service loads. Variations in the manufacturing process, such as applied loading and presence of sealant can influence the induced residual stress field. In previous research, the riveting process has been simulated by a 2D axisymmetric force-controlled analysis. The 2D analysis cannot capture the unsymmetrical residual stress state resulting from process variations. Experimental work has also been limited to observing effects of squeeze force on fatigue crack initiation in the riveted lap joint. In this work, a 3D finite element model of the riveting process that incorporates plasticity and contact between the various surfaces is simulated using ABAQUS finite element code to capture the residual stress state at the rivet/skin interface. The finite element model is implemented to observe the effects of interference, sealant and hole quality on the residual stress state using Implicit and Explicit solvers. Effects of subsequent load transfer are also analyzed with the developed model. A set of controlled lap joint fatigue experiments for the different conditions provides validation to the model.
Fibre Metal Laminates

Author: Ad Vlot
language: en
Publisher: Springer Science & Business Media
Release Date: 2001-11-30
Fibre metal laminates were developed at Delft University of Technology in The Netherlands, from the beginning of the 1980s. This is a new family of hybrid materials consisting of thin metal layers bonded together by fibres embedded in an adhesive. As a result of this build-up, fibre metal laminates possess a mixture of the characteristics of both metals and composite materials. Initial development led to the `Arall' variant using aramid fibres, which was first applied on the C-17 military transport aircraft around 1990. Large-scale application became possible with a variant using glass fibres, dubbed `Glare', which was selected for the Airbus A380 super jumbo in 2001. This is the first book to discuss these new materials and it deals mostly with Glare. It covers most of the relevant aspects of the materials, from static mechanical properties, fatigue and impact to design, production and maintenance of aircraft structures. This book contains the basic information on these new materials necessary for engineers and aircraft operators alike.