Rigid Body Dynamics Of Mechanisms

Download Rigid Body Dynamics Of Mechanisms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Rigid Body Dynamics Of Mechanisms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Rigid Body Dynamics of Mechanisms

Author: Hubert Hahn
language: en
Publisher: Springer Science & Business Media
Release Date: 2002-03-01
This monograph presents an introduction into basic mechanical aspects of mechatronic systems for students, researchers and engineers from industrial practice. An overview over the theoretical background of rigid body mechanics is given as well as a systematic approach for deriving and solving model equations of general rigid body mechanisms in the form of differential-algebraic equations (DAE). The objective of this book is to prepare the reader for being capable of efficiently handling and applying general purpose rigid body programs to complex mechanisms. The reader will be able to set up symbolic mathematical models of planar and spatial mechanisms in DAE-form for computer simulations, often required in dynamic analysis and in control design.
Rigid Body Dynamics of Mechanisms 2

Author: Hubert Hahn
language: en
Publisher: Springer Science & Business Media
Release Date: 2002
Intended for self-study, this second volume presents a systematic approach for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume. The focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, as well as active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. Its examples can be used as models for university lectures.
Rigid Body Dynamics of Mechanisms

Author: Hubert Hahn
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-11
The dynamics of mechanical rigid-body mechanisms is a highly developed discipline. The model equations that apply to the tremendous variety of ap plications of rigid-body systems in industrial practice are based on just a few basic laws of, for example, Newton, Euler, or Lagrange. These basic laws can be written in an extremely compact, symmetrical, and esthetic form, simple enough to be easily learned and kept in mind by students and engi neers, not only from the area of mechanics but also from other disciplines such as physics, or mathematics, or even control, hydraulics, or electronics. This latter aspect is of immense practical importance since mechanisms, ma chines, robots, and vehicles in modern industrial practice (sometimes called mechatronic systems) usually include various subsystems from the areas of hydraulics, electronics, pneumatics, informatics, and control, and are built by engineers trained in quite different disciplines. Conventional methods of modeling rigid-body mechanisms In contrast to the comparatively simple and easy-to-learn basic laws of rigid body systems, the practical application of these laws to the planar or spatial motions of industrial mechanisms rapidly leads to extremely lengthy and complex equations of motion, where the form and complexity of the model equations depends critically on the choice of the model coordinates. Until recently this had the following consequences: 1. A large variety of specialized techniques have been developed, each suit able for efficiently modeling a special-purpose mechanism.