Research Agenda For Test Methods And Models To Simulate The Accelerated Aging Of Infrastructure Materials

Download Research Agenda For Test Methods And Models To Simulate The Accelerated Aging Of Infrastructure Materials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Research Agenda For Test Methods And Models To Simulate The Accelerated Aging Of Infrastructure Materials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Research Agenda for Test Methods and Models to Simulate the Accelerated Aging of Infrastructure Materials

Author: National Research Council
language: en
Publisher: National Academies Press
Release Date: 1999-07-29
In the next several decades, a significant percentage of the country's transportation, communications, environmental, and power system infrastructures, as well as public buildings and facilities, will have to be renewed or replaced. Next-generation infrastructure will have to meet very high expectations in terms of durability, constructability, performance, and life-cycle cost. One way of meeting future expectations will be through improved, high-performance materials, but before new materials can be confidently deployed in the field, a thorough and comprehensive understanding must be developed of their long-term performance in a variety of applications and physical environments. The National Science Foundation (NSF) has launched an initiative to promote the development of innovative short-term laboratory or in-situ tests for making accurate, reliable predictions of the long-term performance of materials and requested that the National Research Council (NRC) conduct a workshop as a reconnaissance-level assessment of models and methods that are being used, or potentially could be used, to determine the long-term performance of infrastructure materials and components.
Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites

Author: Mohammad Jawaid
language: en
Publisher: Woodhead Publishing
Release Date: 2018-09-13
Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. The book presents key aspects of fracture and failure in natural/synthetic, fiber reinforced, polymer based composite materials, ranging from crack propagation, to crack growth, and from notch-size effect, to damage-tolerant design. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials. - Contains contributions from leading experts in the field - Discusses recent progress on failure analysis, SHM, durability, life prediction and the modelling of damage in natural fiber-based composite materials - Covers experimental, analytical and numerical analysis - Provides detailed and comprehensive information on mechanical properties, testing methods and modelling techniques
Long Term Durability of Structural Materials

"Long Term Durability of Structural Materials" features proceedings of the workshop held at Berkeley, CA in October, 2000. It brought together engineers and scientists, who have received grants from the initiative NSF 98-42, to share their results on the study of long-term durability of materials and structures. The major objective was to develop new methods for accelerated short-term laboratory or in-situ tests which allow accurate, reliable, predictions of the long-term performance of materials, machines and structures. To achieve this goal it was important to understand the fundamental nature of the deterioration and damage processes in materials and to develop innovative ways to model the behavior of these processes as they affect the life and long-term performance of components, machines and structures. The researchers discussed their approach to include size effects in scaling up from laboratory specimens to actual structures. Accelerated testing and durability modeling techniques developed were validated by comparing their results with performance under actual operating conditions. The main mechanism of the deterioration discussed included environmental effects and/or exposure to loads, speeds and other operating conditions that are not fully anticipated in the original design. A broad range of deterioration damage, such as fatigue, overload, ultraviolet damage, corrosion, and wear was presented. A broad range of materials of interest was also discussed, including the full spectrum of construction materials, metals, ceramics, polymers, composites, and coatings. Emphasis was placed on scale-dependence and history of fabrication on resulting mechanical behavior of materials.