Representations Wavelets And Frames

Download Representations Wavelets And Frames PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Representations Wavelets And Frames book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Representations, Wavelets, and Frames

Author: Palle E. T. Jorgensen
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-08-29
The work of Lawrence Baggett has had a profound impact on the field of abstract harmonic analysis and the many areas of mathematics that use its techniques. His sphere of influence ranges from purely theoretical results regarding the representations of locally compact groups to recent applications of wavelets and frames to problems in sampling theory and image compression. Contributions in this volume reflect this broad scope, and Baggett’s unusual ability to bring together techniques from disparate fields. Recent applications to problems in sampling theory and image compression are included.
Frames, Bases and Group Representations

This work develops an operator-theoretic approach to discrete frame theory on a separable Hilbert space. It is then applied to an investigation of the structural properties of systems of unitary operators on Hilbert space which are related to orthonormal wavelet theory. Also obtained are applications of frame theory to group representations, and of the theory of abstract unitary systems to frames generated by Gabor type systems.
Operator Methods in Wavelets, Tilings, and Frames

Author: Keri A. Kornelson
language: en
Publisher: American Mathematical Soc.
Release Date: 2014-10-20
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis of Frames, Wavelets, and Tilings, held April 13-14, 2013, in Boulder, Colorado. Frames were first introduced by Duffin and Schaeffer in 1952 in the context of nonharmonic Fourier series but have enjoyed widespread interest in recent years, particularly as a unifying concept. Indeed, mathematicians with backgrounds as diverse as classical and modern harmonic analysis, Banach space theory, operator algebras, and complex analysis have recently worked in frame theory. Frame theory appears in the context of wavelets, spectra and tilings, sampling theory, and more. The papers in this volume touch on a wide variety of topics, including: convex geometry, direct integral decompositions, Beurling density, operator-valued measures, and splines. These varied topics arise naturally in the study of frames in finite and infinite dimensions. In nearly all of the papers, techniques from operator theory serve as crucial tools to solving problems in frame theory. This volume will be of interest not only to researchers in frame theory but also to those in approximation theory, representation theory, functional analysis, and harmonic analysis.