Representation And Productive Ambiguity In Mathematics And The Sciences

Download Representation And Productive Ambiguity In Mathematics And The Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Representation And Productive Ambiguity In Mathematics And The Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Representation and Productive Ambiguity in Mathematics and the Sciences

Emily Grosholz offers an original investigation of demonstration in mathematics and science, examining how it works and why it is persuasive. Focusing on geometrical demonstration, she shows the roles that representation and ambiguity play in mathematical discovery. She presents a wide range of case studies in mechanics, topology, algebra, logic, and chemistry, from ancient Greece to the present day, but focusing particularly on the seventeenth and twentieth centuries. She argues that reductive methods are effective not because they diminish but because they multiply and juxtapose modes of representation. Such problem-solving is, she argues, best understood in terms of Leibnizian 'analysis' - the search for conditions of intelligibility. Discovery and justification are then two aspects of one rational way of proceeding, which produces the mathematician's formal experience. Grosholz defends the importance of iconic, as well as symbolic and indexical, signs in mathematical representation, and argues that pragmatic, as well as syntactic and semantic, considerations are indispensable for mathematical reasoning. By taking a close look at the way results are presented on the page in mathematical (and biological, chemical, and mechanical) texts, she shows that when two or more traditions combine in the service of problem solving, notations and diagrams are sublty altered, multiplied, and juxtaposed, and surrounded by prose in natural language which explains the novel combination. Viewed this way, the texts yield striking examples of language and notation that are irreducibly ambiguous and productive because they are ambiguous. Grosholtz's arguments, which invoke Descartes, Locke, Hume, and Kant, will be of considerable interest to philosophers and historians of mathematics and science, and also have far-reaching consequences for epistemology and philosophy of language.
Representation and Productive Ambiguity in Mathematics and the Sciences

Focusing on geometrical demonstration, the author shows the roles that representation and ambiguity play in mathematical discovery. She presents a wide range of case studies in mechanics, topology, algebra, logic, and chemistry, focusing particularly on the 17th and 20th centuries.
The Argument of Mathematics

Author: Andrew Aberdein
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-07-01
Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. The book begins by first challenging the assumption that there is no role for informal logic in mathematics. Next, it details the usefulness of argumentation theory in the understanding of mathematical practice, offering an impressively diverse set of examples, covering the history of mathematics, mathematics education and, perhaps surprisingly, formal proof verification. From there, the book demonstrates that mathematics also offers a valuable testbed for argumentation theory. Coverage concludes by defending attention to mathematical argumentation as the basis for new perspectives on the philosophy of mathematics.