Relaxation Techniques For The Simulation Of Vlsi Circuits

Download Relaxation Techniques For The Simulation Of Vlsi Circuits PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Relaxation Techniques For The Simulation Of Vlsi Circuits book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Relaxation Techniques for the Simulation of VLSI Circuits

Author: Jacob K. White
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Circuit simulation has been a topic of great interest to the integrated circuit design community for many years. It is a difficult, and interesting, problem be cause circuit simulators are very heavily used, consuming thousands of computer hours every year, and therefore the algorithms must be very efficient. In addi tion, circuit simulators are heavily relied upon, with millions of dollars being gambled on their accuracy, and therefore the algorithms must be very robust. At the University of California, Berkeley, a great deal of research has been devoted to the study of both the numerical properties and the efficient imple mentation of circuit simulation algorithms. Research efforts have led to several programs, starting with CANCER in the 1960's and the enormously successful SPICE program in the early 1970's, to MOTIS-C, SPLICE, and RELAX in the late 1970's, and finally to SPLICE2 and RELAX2 in the 1980's. Our primary goal in writing this book was to present some of the results of our current research on the application of relaxation algorithms to circuit simu lation. As we began, we realized that a large body of mathematical and exper imental results had been amassed over the past twenty years by graduate students, professors, and industry researchers working on circuit simulation. It became a secondary goal to try to find an organization of this mass of material that was mathematically rigorous, had practical relevance, and still retained the natural intuitive simplicity of the circuit simulation subject.
Relaxation Techniques for the Simulation of VLSI Circuits

Circuit simulation has been a topic of great interest to the integrated circuit design community for many years. It is a difficult, and interesting, problem be cause circuit simulators are very heavily used, consuming thousands of computer hours every year, and therefore the algorithms must be very efficient. In addi tion, circuit simulators are heavily relied upon, with millions of dollars being gambled on their accuracy, and therefore the algorithms must be very robust. At the University of California, Berkeley, a great deal of research has been devoted to the study of both the numerical properties and the efficient imple mentation of circuit simulation algorithms. Research efforts have led to several programs, starting with CANCER in the 1960's and the enormously successful SPICE program in the early 1970's, to MOTIS-C, SPLICE, and RELAX in the late 1970's, and finally to SPLICE2 and RELAX2 in the 1980's. Our primary goal in writing this book was to present some of the results of our current research on the application of relaxation algorithms to circuit simu lation. As we began, we realized that a large body of mathematical and exper imental results had been amassed over the past twenty years by graduate students, professors, and industry researchers working on circuit simulation. It became a secondary goal to try to find an organization of this mass of material that was mathematically rigorous, had practical relevance, and still retained the natural intuitive simplicity of the circuit simulation subject.
MOSFET Models for VLSI Circuit Simulation

Author: Narain D. Arora
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Metal Oxide Semiconductor (MOS) transistors are the basic building block ofMOS integrated circuits (I C). Very Large Scale Integrated (VLSI) circuits using MOS technology have emerged as the dominant technology in the semiconductor industry. Over the past decade, the complexity of MOS IC's has increased at an astonishing rate. This is realized mainly through the reduction of MOS transistor dimensions in addition to the improvements in processing. Today VLSI circuits with over 3 million transistors on a chip, with effective or electrical channel lengths of 0. 5 microns, are in volume production. Designing such complex chips is virtually impossible without simulation tools which help to predict circuit behavior before actual circuits are fabricated. However, the utility of simulators as a tool for the design and analysis of circuits depends on the adequacy of the device models used in the simulator. This problem is further aggravated by the technology trend towards smaller and smaller device dimensions which increases the complexity of the models. There is extensive literature available on modeling these short channel devices. However, there is a lot of confusion too. Often it is not clear what model to use and which model parameter values are important and how to determine them. After working over 15 years in the field of semiconductor device modeling, I have felt the need for a book which can fill the gap between the theory and the practice of MOS transistor modeling. This book is an attempt in that direction.