Relativistic Heavy Particle Collision Theory

Download Relativistic Heavy Particle Collision Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Relativistic Heavy Particle Collision Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Relativistic Heavy-Particle Collision Theory

Author: Derrick S.F. Crothers
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
If a heavy particle ion (atom, molecule, muon) collides with another in the gas phase at speeds approaching the speed of light, the time-dependent Dirac equation equation must be used for its description, including quantum electro-dynamic, special relativity and magnetic coupling effects. In this book we study one electron in the variety of rearrangement collisions: radiative and non-radiative capture, ionization, capture by pair (one electron, one positron) production and antihydrogen production. Our relativistic continuum distorted-wave theory accounts extremely well for the simultaneous behaviour of the electron with respect to the nuclear charges of the projectile and the target. This is the first book developed in this subject. Containing many diagrams and tables, and fully referenced, it goes beyond chapters in previous books. The relativistic continuum distorted-wave theory developed by the authors group, is shown to be fully Hermitean. Detailed mathematics are provided in nine appendices.
Structure and Collisions of Ions and Atoms

Author: I.A. Sellin
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The central subject of this volume is the atomic and molecular physics of heavy par ticles as investigated with charged particle accelerators. The natural division be tween atomic structure and ion-atom collision studies, and the similar division be tween the theoretical and experimental branches of these subjects, are reflected in a parallel subdivision into corresponding chapters. In addition, one chapter is de voted to the important interface between atomic and molecular physics with condensed matter physics. A principal aim of the present volume is to provide a compact de scription of a number of current interests and trends within the heavy particle structure and collisions field in a sufficiently general, non-specialized way that interested scientists who wish to become acquainted with such interests and trends can do so without becoming bogged down in excessive archival detail. It is, therefore, hoped that the book will be of some use to advanced students who seek a general in troduction to these subjects. Numerous, more specialized, archival review articles are frequently referred to in each chapter for the benefit of those who seek more detailed knowledge about particular topics discussed. The editor wishes to acknowledge the support of two U. S. government agencies: the Office of Naval Research and the National Science Foundation, during the preparation of this volume. Sincere thanks are due Mrs. Betty Thoe for her excellent editorial work on the various manuscripts and Mrs.
Ion-Atom Collisions

Author: Michael Schulz
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2019-10-21
The few-body problem (FBP), the essence of which is the Schrödinger equation is not solvable for more than two interacting particles. Atomic collisions are ideally suited to study the FBP because the underlying force is essentially understood and because simple systems can be studied for which kinematically complete experiments are feasible. The book would cover various experimental and theoretical approaches in atomic collision research.