Relativistic Celestial Mechanics Of The Solar System

Download Relativistic Celestial Mechanics Of The Solar System PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Relativistic Celestial Mechanics Of The Solar System book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Relativistic Celestial Mechanics of the Solar System

This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic reference frames, the celestial mechanics of N-body systems, and high-precision astrometry, navigation, and geodesy, which are then treated in the following five chapters. The final chapter provides an overview of the new field of applied relativity, based on recent recommendations from the International Astronomical Union. The book is suitable for teaching advanced undergraduate honors programs and graduate courses, while equally serving as a reference for professional research scientists working in relativity and dynamical astronomy. The authors bring their extensive theoretical and practical experience to the subject. Sergei Kopeikin is a professor at the University of Missouri, while Michael Efroimsky and George Kaplan work at the United States Naval Observatory, one of the world?s premier institutions for expertise in astrometry, celestial mechanics, and timekeeping.
Essential Relativistic Celestial Mechanics

Essential Relativistic Celestial Mechanics presents a systematic exposition of the essential questions of relativistic celestial mechanics and their relation to relativistic astrometry. The book focuses on the comparison of calculated and measurable quantities that is of paramount importance in using general relativity as a necessary framework in the discussion of high-precision observations and for the construction of accurate dynamical ephemerides. It discusses the results of the general relativistic theory of motion of celestial bodies and describes the relativistic theory of astronomical reference frames, time scales, and the reduction of observations.
Applications and Experiments

Author: Sergei M. Kopeikin
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2014-08-20
Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This second volume of a two-volume series covers applications of the theory as well as experimental verifications. From tools to determine light travel times in curved space-time to laser ranging between earth and moon and between satellites, and impacts on the definition of time scales and clock comparison techniques, a variety of effects is discussed. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg – one of the pioneers in modern relativistic celestial mechanics. Contributions include: J. Simon, A. Fienga: Victor Brumberg and the French school of analytical celestial mechanics T. Fukushima: Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy P. Teyssandier: New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order G2 J. Müller, L. Biskupek, F. Hofmann and E. Mai: Lunar laser ranging and relativity N. Wex: Testing relativistic celestial mechanics with radio pulsars I. Ciufolini et al.: Dragging of inertial frames, fundamental physics, and satellite laser ranging G. Petit, P. Wolf, P. Delva: Atomic time, clocks, and clock comparisons in relativistic spacetime: a review