Regularized Image Reconstruction In Parallel Mri With Matlab

Download Regularized Image Reconstruction In Parallel Mri With Matlab PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regularized Image Reconstruction In Parallel Mri With Matlab book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Regularized Image Reconstruction in Parallel MRI with MATLAB

Regularization becomes an integral part of the reconstruction process in accelerated parallel magnetic resonance imaging (pMRI) due to the need for utilizing the most discriminative information in the form of parsimonious models to generate high quality images with reduced noise and artifacts. Apart from providing a detailed overview and implementation details of various pMRI reconstruction methods, Regularized image reconstruction in parallel MRI with MATLAB examples interprets regularized image reconstruction in pMRI as a means to effectively control the balance between two specific types of error signals to either improve the accuracy in estimation of missing samples, or speed up the estimation process. The first type corresponds to the modeling error between acquired and their estimated values. The second type arises due to the perturbation of k-space values in autocalibration methods or sparse approximation in the compressed sensing based reconstruction model. Features: Provides details for optimizing regularization parameters in each type of reconstruction. Presents comparison of regularization approaches for each type of pMRI reconstruction. Includes discussion of case studies using clinically acquired data. MATLAB codes are provided for each reconstruction type. Contains method-wise description of adapting regularization to optimize speed and accuracy. This book serves as a reference material for researchers and students involved in development of pMRI reconstruction methods. Industry practitioners concerned with how to apply regularization in pMRI reconstruction will find this book most useful.
Regularized Image Reconstruction in Parallel MRI with MATLAB

Regularization becomes an integral part of the reconstruction process in accelerated parallel magnetic resonance imaging (pMRI) due to the need for utilizing the most discriminative information in the form of parsimonious models to generate high quality images with reduced noise and artifacts. Apart from providing a detailed overview and implementation details of various pMRI reconstruction methods, Regularized image reconstruction in parallel MRI with MATLAB examples interprets regularized image reconstruction in pMRI as a means to effectively control the balance between two specific types of error signals to either improve the accuracy in estimation of missing samples, or speed up the estimation process. The first type corresponds to the modeling error between acquired and their estimated values. The second type arises due to the perturbation of k-space values in autocalibration methods or sparse approximation in the compressed sensing based reconstruction model. Features: Provides details for optimizing regularization parameters in each type of reconstruction. Presents comparison of regularization approaches for each type of pMRI reconstruction. Includes discussion of case studies using clinically acquired data. MATLAB codes are provided for each reconstruction type. Contains method-wise description of adapting regularization to optimize speed and accuracy. This book serves as a reference material for researchers and students involved in development of pMRI reconstruction methods. Industry practitioners concerned with how to apply regularization in pMRI reconstruction will find this book most useful.
Computer Science for Environmental Engineering and EcoInformatics

This two-volume set (CCIS 158 and CCIS 159) constitutes the refereed proceedings of the International Workshop on Computer Science for Environmental Engineering and EcoInformatics, CSEEE 2011, held in Kunming, China, in July 2011. The 150 revised full papers presented in both volumes were carefully reviewed and selected from a large number of submissions. The papers are organized in topical sections on computational intelligence; computer simulation; computing practices and applications; ecoinformatics; image processing information retrieval; pattern recognition; wireless communication and mobile computing; artificial intelligence and pattern classification; computer networks and Web; computer software, data handling and applications; data communications; data mining; data processing and simulation; information systems; knowledge data engineering; multimedia applications.