Regularization In Machine Learning Medium

Download Regularization In Machine Learning Medium PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regularization In Machine Learning Medium book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hacker’s Guide to Machine Learning Concepts

Hacker’s Guide to Machine Learning Concepts is crafted for those eager to dive into the world of ethical hacking. This book demonstrates how ethical hacking can help companies identify and fix vulnerabilities efficiently. With the rise of data and the evolving IT industry, the scope of ethical hacking continues to expand. We cover various hacking techniques, identifying weak points in programs, and how to address them. The book is accessible even to beginners, offering chapters on machine learning and programming in Python. Written in an easy-to-understand manner, it allows learners to practice hacking steps independently on Linux or Windows systems using tools like Netsparker. This book equips you with fundamental and intermediate knowledge about hacking, making it an invaluable resource for learners.
Machine Learning in Clinical Neuroscience

Author: Victor E. Staartjes
language: en
Publisher: Springer Nature
Release Date: 2021-12-03
This book bridges the gap between data scientists and clinicians by introducing all relevant aspects of machine learning in an accessible way, and will certainly foster new and serendipitous applications of machine learning in the clinical neurosciences. Building from the ground up by communicating the foundational knowledge and intuitions first before progressing to more advanced and specific topics, the book is well-suited even for clinicians without prior machine learning experience. Authored by a wide array of experienced global machine learning groups, the book is aimed at clinicians who are interested in mastering the basics of machine learning and who wish to get started with their own machine learning research. The volume is structured in two major parts: The first uniquely introduces all major concepts in clinical machine learning from the ground up, and includes step-by-step instructions on how to correctly develop and validate clinical prediction models. It also includes methodological and conceptual foundations of other applications of machine learning in clinical neuroscience, such as applications of machine learning to neuroimaging, natural language processing, and time series analysis. The second part provides an overview of some state-of-the-art applications of these methodologies. The Machine Intelligence in Clinical Neuroscience (MICN) Laboratory at the Department of Neurosurgery of the University Hospital Zurich studies clinical applications of machine intelligence to improve patient care in clinical neuroscience. The group focuses on diagnostic, prognostic and predictive analytics that aid in decision-making by increasing objectivity and transparency to patients. Other major interests of our group members are in medical imaging, and intraoperative applications of machine vision.
Math Optimization for Artificial Intelligence

Author: Umesh Kumar Lilhore
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2025-04-21
The book presents powerful optimization approaches for integrating AI into daily life. This book explores how heuristic and metaheuristic methodologies have revolutionized the fields of robotics and machine learning. The book covers the wide range of tools and methods that have emerged as part of the AI revolution, from state-of-the-art decision-making algorithms for robots to data-driven machine learning models. Each chapter offers a meticulous examination of the theoretical foundations and practical applications of mathematical optimization, helping readers understand how these methods are transforming the field of technology. This book is an invaluable resource for researchers, practitioners, and students. It makes AI optimization accessible and comprehensible, equipping the next generation of innovators with the knowledge and skills to further advance robotics and machine learning. While artificial intelligence constantly evolves, this book sheds light on the path ahead.