Regular Differential Forms

Download Regular Differential Forms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regular Differential Forms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Regular Differential Forms

Suitable for students and researchers in commutative algebra, algebraic geometry, and neighboring disciplines, this book introduces various sheaves of differential forms for equidimensional morphisms of finite type between noetherian schemes, the most important being the sheaf of regular differential forms.
A Concise Introduction to Algebraic Varieties

Author: Brian Osserman
language: en
Publisher: American Mathematical Society
Release Date: 2021-12-06
A Concise Introduction to Algebraic Varieties is designed for a one-term introductory course on algebraic varieties over an algebraically closed field, and it provides a solid basis for a course on schemes and cohomology or on specialized topics, such as toric varieties and moduli spaces of curves. The book balances generality and accessibility by presenting local and global concepts, such as nonsingularity, normality, and completeness using the language of atlases, an approach that is most commonly associated with differential topology. The book concludes with a discussion of the Riemann-Roch theorem, the Brill-Noether theorem, and applications. The prerequisites for the book are a strong undergraduate algebra course and a working familiarity with basic point-set topology. A course in graduate algebra is helpful but not required. The book includes appendices presenting useful background in complex analytic topology and commutative algebra and provides plentiful examples and exercises that help build intuition and familiarity with algebraic varieties.
Introduction to Coding Theory and Algebraic Geometry

These notes are based on lectures given in the semmar on "Coding Theory and Algebraic Geometry" held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course