Regression Models For Categorical Dependent Variables Using Stata 3rd Ed


Download Regression Models For Categorical Dependent Variables Using Stata 3rd Ed PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regression Models For Categorical Dependent Variables Using Stata 3rd Ed book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Regression Models for Categorical Dependent Variables Using Stata, Third Edition


Regression Models for Categorical Dependent Variables Using Stata, Third Edition

Author: J. Scott Long

language: en

Publisher: Stata Press

Release Date: 2014-09-10


DOWNLOAD





Regression Models for Categorical Dependent Variables Using Stata, Third Edition shows how to use Stata to fit and interpret regression models for categorical data. The third edition is a complete rewrite of the book. Factor variables and the margins command changed how the effects of variables can be estimated and interpreted. In addition, the authors' views on interpretation have evolved. The changes to Stata and to the authors' views inspired the authors to completely rewrite their popular SPost commands to take advantage of the power of the margins command and the flexibility of factor-variable notation. The new edition will interest readers of a previous edition as well as new readers. Even though about 150 pages of appendixes were removed, the third edition is about 60 pages longer than the second. Although regression models for categorical dependent variables are common, few texts explain how to interpret such models; this text fills the void. With the book, Long and Freese provide a suite of commands for model interpretation, hypothesis testing, and model diagnostics. The new commands that accompany the third edition make it easy to include powers or interactions of covariates in regression models and work seamlessly with models estimated with complex survey data. The authors' new commands greatly simplify the use of margins, in the same way that the marginsplot command harnesses the power of margins for plotting predictions. The authors discuss how to use margins and their new mchange, mtable, and mgen commands to compute tables and to plot predictions. They also discuss how to use these commands to estimate marginal effects, averaged either over the sample or at fixed values of the regressors. The authors introduce and advocate a variety of new methods that use predictions to interpret the effect of variables in regression models. The third edition begins with an excellent introduction to Stata and follows with general treatments of the estimation, testing, fit, and interpretation of this class of models. New to the third edition is an entire chapter about how to interpret regression models using predictions—a chapter that is expanded upon in later chapters that focus on models for binary, ordinal, nominal, and count outcomes. Long and Freese use many concrete examples in their third edition. All the examples, datasets, and author-written commands are available on the authors' website, so readers can easily replicate the examples with Stata. This book is ideal for students or applied researchers who want to learn how to fit and interpret models for categorical data.

Regression Models for Categorical Dependent Variables Using Stata, Second Edition


Regression Models for Categorical Dependent Variables Using Stata, Second Edition

Author: J. Scott Long

language: en

Publisher: Stata Press

Release Date: 2006


DOWNLOAD





The goal of the book is to make easier to carry out the computations necessary for the full interpretation of regression nonlinear models for categorical outcomes usign Stata.

Regression Models for Categorical and Limited Dependent Variables


Regression Models for Categorical and Limited Dependent Variables

Author: J. Scott Long

language: en

Publisher: SAGE

Release Date: 1997-01-09


DOWNLOAD





THE APPROACH "J. Scott Long′s approach is one that I highly commend. There is a decided emphasis on the application and interpretation of the specific statistical techniques. Long works from the premise that the major difficulty with the analysis of limited and categorical dependent variables (LCDVs) is the complexity of interpreting nonlinear models, and he provides tools for interpretation that can be widely applied across the different techniques." --Robert L. Kaufman, Sociology, Ohio State University "A thorough and comprehensive introduction to analyzing categorical and limited dependent variables from a traditional regression perspective that provides unusually clear discussions concerning estimation, identification, and the multiplicity of models available to the researcher to analyze such data." --Scott Hershberger, Psychology, University of Kansas THE ORGANIZATION "The thing that impresses me the most about this book is how organized it is. The chapters are in excellent logical sequence. There is a useful repetition of important concepts (e.g., estimation, hypothesis testing) from chapter to chapter. J. Scott Long has done a terrific job of organizing like things from disparate literatures, such as the scaler measures of fit in Chapter 4." --Herbert L. Smith, Sociology, University of Pennsylvania "A major strength of the book is the way that it is organized. The chapter about each technique is written in a highly organized and parallel format. First the statistical basis and assumptions for the particular model are developed, then estimation issues are considered, then issues of testing and interpretation are considered, then variations and extensions are explored." --Robert L. Kaufman, Sociology, Ohio State University FOR THE COURSE "I have been teaching a course on categorical data analysis to sociology graduate students for close to 20 years, but I have never found a book with which I was happy. J. Scott Long′s book, on the other hand, is nearly ideal for my objectives and preferences, and I expect that many other social scientists will feel the same way. I will definitely adopt it the next time I teach the course. It deals with the right topics in the most desirable sequence and it is clearly written." --Paul D. Allison, Sociology, University of Pennsylvania Class-tested at two major universities and written by an award-winning teacher, J. Scott Long′s book gives readers unified treatment of the most useful models for categorical and limited dependent variables (CLDVs). Throughout the book, the links among models are made explicit, and common methods of derivation, interpretation, and testing are applied. In addition, Long explains how models relate to linear regression models whenever possible. In order for the reader to see how these models can be applied, Long illustrates each model with data from a variety of applications, ranging from attitudes toward working mothers to scientific productivity. The book begins with a review of the linear regression model and an introduction to maximum likelihood estimation. It then covers the logit and probit models for binary outcomes--providing details on each of the ways in which these models can be interpreted, reviews standard statistical tests associated with maximum likelihood estimation, and considers a variety of measures for assessing the fit of a model. Long extends the binary logit and probit models to ordered outcomes, presents the multinomial and conditioned logit models for nominal outcomes, and considers models with censored and truncated dependent variables with a focus on the tobit model. He also describes models for sample selection bias and presents models for count outcomes by beginning with the Poisson regression model and showing how this model leads to the negative binomial model and zero inflated count models. He concludes by comparing and contrasting the models from earlier chapters and discussing the links between these models and models not discussed in the book, such as loglinear and event history models. Helpful exercises are included in the book with brief answers included in the appendix so that readers can practice the techniques as they read about them.