Reconfigurable Control Of Nonlinear Dynamical Systems


Download Reconfigurable Control Of Nonlinear Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Reconfigurable Control Of Nonlinear Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Reconfigurable Control of Nonlinear Dynamical Systems


Reconfigurable Control of Nonlinear Dynamical Systems

Author: Jan H. Richter

language: en

Publisher: Springer

Release Date: 2011-02-02


DOWNLOAD





This research monograph summarizes solutions to reconfigurable fault-tolerant control problems for nonlinear dynamical systems that are based on the fault-hiding principle. It emphasizes but is not limited to complete actuator and sensor failures. In the first part, the monograph starts with a broad introduction of the control reconfiguration problems and objectives as well as summaries and explanations of solutions for linear dynamical systems. The solution is always a reconfiguration block, which consists of linear virtual actuators in the case of actuator faults and linear virtual sensors in the case of sensor faults. The main advantage of the fault-hiding concept is the reusability of the nominal controller, which remains in the loop as an active system while the virtual actuator and sensor adapt the control input and the measured output to the fault scenario. The second and third parts extend virtual actuators and virtual sensors towards the classes of Hammerstein-Wiener systems and piecewise affine systems. The main analyses concern stability recovery, setpoint tracking recovery, and performance recovery as reconfiguration objectives. The fourth part concludes the monograph with descriptions of practical implementations and case studies. The book is primarily intended for active researchers and practicing engineers in the field of fault-tolerant control. Due to many running examples it is also suitable for interested graduate students.

Reconfigurable Control of Nonlinear Dynamical Systems


Reconfigurable Control of Nonlinear Dynamical Systems

Author: Jan H. Richter

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-01-16


DOWNLOAD





This research monograph summarizes solutions to reconfigurable fault-tolerant control problems for nonlinear dynamical systems that are based on the fault-hiding principle. It emphasizes but is not limited to complete actuator and sensor failures. In the first part, the monograph starts with a broad introduction of the control reconfiguration problems and objectives as well as summaries and explanations of solutions for linear dynamical systems. The solution is always a reconfiguration block, which consists of linear virtual actuators in the case of actuator faults and linear virtual sensors in the case of sensor faults. The main advantage of the fault-hiding concept is the reusability of the nominal controller, which remains in the loop as an active system while the virtual actuator and sensor adapt the control input and the measured output to the fault scenario. The second and third parts extend virtual actuators and virtual sensors towards the classes of Hammerstein-Wiener systems and piecewise affine systems. The main analyses concern stability recovery, setpoint tracking recovery, and performance recovery as reconfiguration objectives. The fourth part concludes the monograph with descriptions of practical implementations and case studies. The book is primarily intended for active researchers and practicing engineers in the field of fault-tolerant control. Due to many running examples it is also suitable for interested graduate students.

Advances in Gain-Scheduling and Fault Tolerant Control Techniques


Advances in Gain-Scheduling and Fault Tolerant Control Techniques

Author: Damiano Rotondo

language: en

Publisher: Springer

Release Date: 2017-10-14


DOWNLOAD





This thesis reports on novel methods for gain-scheduling and fault tolerant control (FTC). It begins by analyzing the connection between the linear parameter varying (LPV) and Takagi-Sugeno (TS) paradigms. This is then followed by a detailed description of the design of robust and shifting state-feedback controllers for these systems. Furthermore, it presents two approaches to fault-tolerant control: the first is based on a robust polytopic controller design, while the second involves a reconfiguration of the reference model and the addition of virtual actuators into the loop. Inaddition the thesis offers a thorough review of the state-of-the art in gain scheduling and fault-tolerant control, with a special emphasis on LPV and TS systems.