Reasoning In Event Based Distributed Systems

Download Reasoning In Event Based Distributed Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Reasoning In Event Based Distributed Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Reasoning in Event-Based Distributed Systems

Author: Sven Helmer
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-06-17
With the rapid expansion of the Internet over the last 20 years, event-based distributed systems are playing an increasingly important role in a broad range of application domains, including enterprise management, environmental monitoring, information dissemination, finance, pervasive systems, autonomic computing, collaborative working and learning, and geo-spatial systems. Many different architectures, languages and technologies are being used for implementing event-based distributed systems, and much of the development has been undertaken independently by different communities. However, a common factor is an ever-increasing complexity. Users and developers expect that such systems are able not only to handle large volumes of simple events but also to detect complex patterns of events that may be spatially distributed and may span significant periods of time. Intelligent and logic-based approaches provide sound foundations for addressing many of the research challenges faced and this book covers a broad range of recent advances, contributed by leading experts in the field. It presents a comprehensive view of reasoning in event-based distributed systems, bringing together reviews of the state-of-the art, new research contributions, and an extensive set of references. It will serve as a valuable resource for students, faculty and researchers as well as industry practitioners responsible for new systems development.
Reasoning in Event-Based Distributed Systems

With the rapid expansion of the Internet over the last 20 years, event-based distributed systems are playing an increasingly important role in a broad range of application domains, including enterprise management, environmental monitoring, information dissemination, finance, pervasive systems, autonomic computing, collaborative working and learning, and geo-spatial systems. Many different architectures, languages and technologies are being used for implementing event-based distributed systems, and much of the development has been undertaken independently by different communities. However, a common factor is an ever-increasing complexity. Users and developers expect that such systems are able not only to handle large volumes of simple events but also to detect complex patterns of events that may be spatially distributed and may span significant periods of time. Intelligent and logic-based approaches provide sound foundations for addressing many of the research challenges faced and this book covers a broad range of recent advances, contributed by leading experts in the field. It presents a comprehensive view of reasoning in event-based distributed systems, bringing together reviews of the state-of-the art, new research contributions, and an extensive set of references. It will serve as a valuable resource for students, faculty and researchers as well as industry practitioners responsible for new systems development.
Trustworthiness in Mobile Cyber Physical Systems

Computing and communication capabilities are increasingly embedded in diverse objects and structures in the physical environment. They will link the ‘cyberworld’ of computing and communications with the physical world. These applications are called cyber physical systems (CPS). Obviously, the increased involvement of real-world entities leads to a greater demand for trustworthy systems. Hence, we use "system trustworthiness" here, which can guarantee continuous service in the presence of internal errors or external attacks. Mobile CPS (MCPS) is a prominent subcategory of CPS in which the physical component has no permanent location. Mobile Internet devices already provide ubiquitous platforms for building novel MCPS applications. The objective of this Special Issue is to contribute to research in modern/future trustworthy MCPS, including design, modeling, simulation, dependability, and so on. It is imperative to address the issues which are critical to their mobility, report significant advances in the underlying science, and discuss the challenges of development and implementation in various applications of MCPS.