Real World Algorithms


Download Real World Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Real World Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Real-World Algorithms


Real-World Algorithms

Author: Panos Louridas

language: en

Publisher: MIT Press

Release Date: 2017-03-17


DOWNLOAD





An introduction to algorithms for readers with no background in advanced mathematics or computer science, emphasizing examples and real-world problems. Algorithms are what we do in order not to have to do something. Algorithms consist of instructions to carry out tasks—usually dull, repetitive ones. Starting from simple building blocks, computer algorithms enable machines to recognize and produce speech, translate texts, categorize and summarize documents, describe images, and predict the weather. A task that would take hours can be completed in virtually no time by using a few lines of code in a modern scripting program. This book offers an introduction to algorithms through the real-world problems they solve. The algorithms are presented in pseudocode and can readily be implemented in a computer language. The book presents algorithms simply and accessibly, without overwhelming readers or insulting their intelligence. Readers should be comfortable with mathematical fundamentals and have a basic understanding of how computers work; all other necessary concepts are explained in the text. After presenting background in pseudocode conventions, basic terminology, and data structures, chapters cover compression, cryptography, graphs, searching and sorting, hashing, classification, strings, and chance. Each chapter describes real problems and then presents algorithms to solve them. Examples illustrate the wide range of applications, including shortest paths as a solution to paragraph line breaks, strongest paths in elections systems, hashes for song recognition, voting power Monte Carlo methods, and entropy for machine learning. Real-World Algorithms can be used by students in disciplines from economics to applied sciences. Computer science majors can read it before using a more technical text.

Algorithms


Algorithms

Author: Panos Louridas

language: en

Publisher: MIT Press

Release Date: 2020-08-18


DOWNLOAD





In the tradition of Real World Algorithms: A Beginner's Guide, Panos Louridas is back to introduce algorithms in an accessible manner, utilizing various examples to explain not just what algorithms are but how they work. Digital technology runs on algorithms, sets of instructions that describe how to do something efficiently. Application areas range from search engines to tournament scheduling, DNA sequencing, and machine learning. Arguing that every educated person today needs to have some understanding of algorithms and what they do, in this volume in the MIT Press Essential Knowledge series, Panos Louridas offers an introduction to algorithms that is accessible to the nonspecialist reader. Louridas explains not just what algorithms are but also how they work, offering a wide range of examples and keeping mathematics to a minimum.

Parallel Genetic Algorithms


Parallel Genetic Algorithms

Author: Gabriel Luque

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-06-15


DOWNLOAD





This book is the result of several years of research trying to better characterize parallel genetic algorithms (pGAs) as a powerful tool for optimization, search, and learning. Readers can learn how to solve complex tasks by reducing their high computational times. Dealing with two scientific fields (parallelism and GAs) is always difficult, and the book seeks at gracefully introducing from basic concepts to advanced topics. The presentation is structured in three parts. The first one is targeted to the algorithms themselves, discussing their components, the physical parallelism, and best practices in using and evaluating them. A second part deals with the theory for pGAs, with an eye on theory-to-practice issues. A final third part offers a very wide study of pGAs as practical problem solvers, addressing domains such as natural language processing, circuits design, scheduling, and genomics. This volume will be helpful both for researchers and practitioners. The first part shows pGAs to either beginners and mature researchers looking for a unified view of the two fields: GAs and parallelism. The second part partially solves (and also opens) new investigation lines in theory of pGAs. The third part can be accessed independently for readers interested in applications. The result is an excellent source of information on the state of the art and future developments in parallel GAs.