Real Time Big Data Analytics


Download Real Time Big Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Real Time Big Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Real-Time Big Data Analytics


Real-Time Big Data Analytics

Author: Trilokesh Khatri

language: en

Publisher: Educohack Press

Release Date: 2025-01-03


DOWNLOAD





Real-Time Big Data Analytics: Emerging Trends explores how advanced technologies have significantly reduced data processing cycle time, enabling unprecedented data exploration and experimentation. This book delves into the real promise of advanced data analytics beyond mere technology, highlighting how real-time big data analytics processes data as it arrives to provide timely, actionable insights. We discuss scalable hardware solutions based on emerging technologies like nonvolatile memory devices and in-memory computing, paired with optimized data analytics algorithms such as machine learning. The book covers various frameworks for data analytics, including Hadoop, Spark, Storm, and NoSQL, and provides a comparative performance analysis of each. Designed for students, scholars, and professionals, Real-Time Big Data Analytics: Emerging Trends is an invaluable resource for those looking to master big data and real-time analytics.

Real-Time Big Data Analytics


Real-Time Big Data Analytics

Author: Sumit Gupta

language: en

Publisher: Packt Publishing Ltd

Release Date: 2016-02-26


DOWNLOAD





Design, process, and analyze large sets of complex data in real time About This Book Get acquainted with transformations and database-level interactions, and ensure the reliability of messages processed using Storm Implement strategies to solve the challenges of real-time data processing Load datasets, build queries, and make recommendations using Spark SQL Who This Book Is For If you are a Big Data architect, developer, or a programmer who wants to develop applications/frameworks to implement real-time analytics using open source technologies, then this book is for you. What You Will Learn Explore big data technologies and frameworks Work through practical challenges and use cases of real-time analytics versus batch analytics Develop real-word use cases for processing and analyzing data in real-time using the programming paradigm of Apache Storm Handle and process real-time transactional data Optimize and tune Apache Storm for varied workloads and production deployments Process and stream data with Amazon Kinesis and Elastic MapReduce Perform interactive and exploratory data analytics using Spark SQL Develop common enterprise architectures/applications for real-time and batch analytics In Detail Enterprise has been striving hard to deal with the challenges of data arriving in real time or near real time. Although there are technologies such as Storm and Spark (and many more) that solve the challenges of real-time data, using the appropriate technology/framework for the right business use case is the key to success. This book provides you with the skills required to quickly design, implement and deploy your real-time analytics using real-world examples of big data use cases. From the beginning of the book, we will cover the basics of varied real-time data processing frameworks and technologies. We will discuss and explain the differences between batch and real-time processing in detail, and will also explore the techniques and programming concepts using Apache Storm. Moving on, we'll familiarize you with “Amazon Kinesis” for real-time data processing on cloud. We will further develop your understanding of real-time analytics through a comprehensive review of Apache Spark along with the high-level architecture and the building blocks of a Spark program. You will learn how to transform your data, get an output from transformations, and persist your results using Spark RDDs, using an interface called Spark SQL to work with Spark. At the end of this book, we will introduce Spark Streaming, the streaming library of Spark, and will walk you through the emerging Lambda Architecture (LA), which provides a hybrid platform for big data processing by combining real-time and precomputed batch data to provide a near real-time view of incoming data. Style and approach This step-by-step is an easy-to-follow, detailed tutorial, filled with practical examples of basic and advanced features. Each topic is explained sequentially and supported by real-world examples and executable code snippets.

Real-Time Big Data Analytics: Emerging Architecture


Real-Time Big Data Analytics: Emerging Architecture

Author: Mike Barlow

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2013-06-24


DOWNLOAD





Five or six years ago, analysts working with big datasets made queries and got the results back overnight. The data world was revolutionized a few years ago when Hadoop and other tools made it possible to getthe results from queries in minutes. But the revolution continues. Analysts now demand sub-second, near real-time query results. Fortunately, we have the tools to deliver them. This report examines tools and technologies that are driving real-time big data analytics.