Random Packing And Random Covering Sequences

Download Random Packing And Random Covering Sequences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Random Packing And Random Covering Sequences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Random Packing and Random Covering Sequences

Author: Stanford University. Department of Statistics
language: en
Publisher:
Release Date: 1987
In a sequential packing problem, random objects are uniformly and independently selected from some space. A selected object is either packed or rejected, depending on the distance between it and the nearest object which has been previously packed. A saturated packing is said to exist when it is no longer possible to pack any additional selections. The random packing density is the average proportion of the space which is occupied by the packed objects at saturation. Results concerning the time of the first rejection in a packing sequence are given in Chapter 1. The accuracy of some common approximation formulas is investigated for several settings. The problems considered may be thought of as generalizations of the classical birthday problem. Exact results concerning random packing densities are generally known only for some packing sequences in one-dimensional spaces. In Chapter 2, the packing densities of various computer generated codes are examined. These stochastically constructed codes provide a convenient way to study packing in multidimensional spaces. Asymptotic approximation formulas are given for the packing densities which arise from several different coding schemes. In Chapter 3 the distribution of the number of random selections needed to achieve a saturated packing is considered. In each of the settings examined, the results are compared with analogous results from an associated random covering problem.
Recent Developments in Fractals and Related Fields

This contributed volume provides readers with an overview of the most recent developments in the mathematical fields related to fractals, including both original research contributions, as well as surveys from many of the leading experts on modern fractal theory and applications. It is an outgrowth of the Conference of Fractals and Related Fields III, that was held on September 19-25, 2015 in île de Porquerolles, France. Chapters cover fields related to fractals such as harmonic analysis, multifractal analysis, geometric measure theory, ergodic theory and dynamical systems, probability theory, number theory, wavelets, potential theory, partial differential equations, fractal tilings, combinatorics, and signal and image processing. The book is aimed at pure and applied mathematicians in these areas, as well as other researchers interested in discovering the fractal domain.