Random Fourier Series With Applications To Harmonic Analysis Am 101 Volume 101

Download Random Fourier Series With Applications To Harmonic Analysis Am 101 Volume 101 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Random Fourier Series With Applications To Harmonic Analysis Am 101 Volume 101 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Geometric Aspects of Functional Analysis

This book reflects general trends in the study of geometric aspects of functional analysis, understood in a broad sense. A classical theme in the local theory of Banach spaces is the study of probability measures in high dimension and the concentration of measure phenomenon. Here this phenomenon is approached from different angles, including through analysis on the Hamming cube, and via quantitative estimates in the Central Limit Theorem under thin-shell and related assumptions. Classical convexity theory plays a central role in this volume, as well as the study of geometric inequalities. These inequalities, which are somewhat in spirit of the Brunn-Minkowski inequality, in turn shed light on convexity and on the geometry of Euclidean space. Probability measures with convexity or curvature properties, such as log-concave distributions, occupy an equally central role and arise in the study of Gaussian measures and non-trivial properties of the heat flow in Euclidean spaces. Also discussed are interactions of this circle of ideas with linear programming and sampling algorithms, including the solution of a question in online learning algorithms using a classical convexity construction from the 19th century.
Limit Theorems of Probability Theory

Author: Yu.V. Prokhorov
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-14
This book consists of five parts written by different authors devoted to various problems dealing with probability limit theorems. The first part, "Classical-Type Limit Theorems for Sums ofIndependent Random Variables" (V.v. Petrov), presents a number of classical limit theorems for sums of independent random variables as well as newer related results. The presentation dwells on three basic topics: the central limit theorem, laws of large numbers and the law of the iterated logarithm for sequences of real-valued random variables. The second part, "The Accuracy of Gaussian Approximation in Banach Spaces" (V. Bentkus, F. G6tze, V. Paulauskas and A. Rackauskas), reviews various results and methods used to estimate the convergence rate in the central limit theorem and to construct asymptotic expansions in infinite-dimensional spaces. The authors con fine themselves to independent and identically distributed random variables. They do not strive to be exhaustive or to obtain the most general results; their aim is merely to point out the differences from the finite-dimensional case and to explain certain new phenomena related to the more complex structure of Banach spaces. Also reflected here is the growing tendency in recent years to apply results obtained for Banach spaces to asymptotic problems of statistics.