Radar Waveform Design Based On Optimization Theory

Download Radar Waveform Design Based On Optimization Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Radar Waveform Design Based On Optimization Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Radar Waveform Design based on Optimization Theory

This book provides an overview of radar waveform synthesis obtained as the result of computational optimization processes and covers the most challenging application fields. The book balances a practical point of view with a rigorous mathematical approach corroborated with a wealth of numerical study cases and some real experiments. Additionally, the book has a cross-disciplinary approach because it exploits cross-fertilization with the recent research and discoveries in optimization theory. The material of the book is organized into ten chapters, each one completed with a comprehensive list of references.
Waveform Design and Diversity for Advanced Radar Systems

This is the first book to discuss current and future applications of waveform diversity and design in subjects such as radar and sonar, communications systems, passive sensing, and many other technologies. Waveform diversity allows researchers and system designers to optimize electromagnetic and acoustic systems for sensing, communications, electronic warfare or combinations thereof. It enables solutions to problems with how each system performs its own particular function as well as how it is affected by other systems and how those other systems may likewise be affected. It is an excellent standalone introduction to waveform diversity and design, which takes a high potential technology area and makes it visible to other researchers, as well as young engineers.
Signal Processing for Joint Radar Communications

Author: Kumar Vijay Mishra
language: en
Publisher: John Wiley & Sons
Release Date: 2024-04-23
Signal Processing for Joint Radar Communications A one-stop, comprehensive source for the latest research in joint radar communications In Signal Processing for Joint Radar Communications, four eminent electrical engineers deliver a practical and informative contribution to the diffusion of newly developed joint radar communications (JRC) tools into the sensing and communications communities. This book illustrates recent successes in applying modern signal processing theories to core problems in JRC. The book offers new results on algorithms and applications of JRC from diverse perspectives, including waveform design, physical layer processing, privacy, security, hardware prototyping, resource allocation, and sampling theory. The distinguished editors bring together contributions from more than 40 leading JRC researchers working on remote sensing, electromagnetics, optimization, signal processing, and beyond 5G wireless networks. The included resources provide an in-depth mathematical treatment of relevant signal processing tools and computational methods allowing readers to take full advantage of JRC systems. Readers will also find: Thorough introductions to fundamental limits and background on JRC theory and applications, including dual-function radar communications, cooperative JRC, distributed JRC, and passive JRC Comprehensive explorations of JRC processing via waveform analyses, interference mitigation, and modeling with jamming and clutter Practical discussions of information-theoretic, optimization, and networking aspects of JRC In-depth examinations of JRC applications in cutting-edge scenarios including automotive systems, intelligent reflecting surfaces, and secure parameter estimation Perfect for researchers and professionals in the fields of radar, signal processing, communications, information theory, networking, and electronic warfare, Signal Processing for Joint Radar Communications will also earn a place in the libraries of engineers working in the defense, aerospace, wireless communications, and automotive industries.