Radar Rf Circuit Design Second Edition

Download Radar Rf Circuit Design Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Radar Rf Circuit Design Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Radar RF Circuit Design

This authoritative new resource presents practical techniques for optimizing RF and microwave circuits for applications in radar systems design with an emphasis on current and emerging technologies. Professionals learn how to design RF components for radar systems and how to choose appropriate materials and packaging methods. This book explains how to integrate components while avoiding higher-level assembly issues and troubleshooting problems on the measurement bench. Theory and practical information are provided while addressing topics ranging from heat removal to digital circuit integration. This book is divided into three sections: the first section introduces the basics of microwave design, including transmission line theory and common materials used in RF circuits. The methods for creating accurate device models for both passive and active circuits are presented. The second part details the design of power amplifiers, low noise amplifiers, and passive elements. Both conventional and state-of-the-art design techniques are included with ample ‘tips and tricks.’ The last section concludes with a focus on component integration providing details on design methods for military operations, high manufacturing yield, and preventing measurement issues.
Radar RF Circuit Design, Second Edition

This new edition of a previous bestseller gives you practical techniques for optimizing RF and microwave circuits for applications in radar systems design, with an emphasis on current and emerging technologies. Completely updated with new material, the book shows you how to design RF components for radar systems and how to choose appropriate materials and packaging methods. It takes you through classic techniques, to the state of the art, and finally to emerging technologies. You will learn: How to design high-frequency circuits for use in radar applications How to integrate components while avoiding higher-level assembly issues and troubleshooting problems on the measurement bench How to properly simulate, build, assemble, and test high-frequency circuits How to debug issues with hardware on the bench How to connect microwave theory to practical circuit design Theory and practical information are provided while addressing topics ranging from heat removal to digital circuit integration. The book serves as a teaching aid for classic techniques that are still relevant today. It also demonstrates how these techniques are serving as the foundation for technologies to come. You will be equipped to consider future needs and emerging enabling technologies and confidently think (and design) outside the box to ensure future needs are met. The book also shows you how to incorporate modern design techniques often overlooked or underused, and will help you to better understand the capabilities and limitations of today’s technology and the emerging technologies that are on the horizon to mitigate those limitations. This is a must-have resource for system-level radar designers who want to up their game in RF/microwave component design. It is also a great tool for RF/microwave engineers tasked or interested in designing components for radar systems. Students and new designers of radar components will also benefit and be well prepared to start designing immediately.
Basic Radar Analysis, Second Edition

This highly-anticipated second edition of an Artech House classic covers several key radar analysis areas: the radar range equation, detection theory, ambiguity functions, waveforms, antennas, active arrays, receivers and signal processors, CFAR and chaff analysis. Readers will be able to predict the detection performance of a radar system using the radar range equation, its various parameters, matched filter theory, and Swerling target models. The performance of various signal processors, single pulse, pulsed Doppler, LFM, NLFM, and BPSK, are discussed, taking into account factors including MTI processing, integration gain, weighting loss and straddling loss. The details of radar analysis are covered from a mathematical perspective, with in-depth breakdowns of radar performance in the presence of clutter. Readers will be able to determine the nose temperature of a multi-channel receiver as it is used in active arrays. With the addition of three new chapters on moving target detectors, inverse synthetic aperture radar (ISAR) and constant false alarm rate (CFAR) and new MATLAB codes, this expanded second edition will appeal to the novice as well as the experienced practitioner.