Radar Principles With Applications To Tracking Systems

Download Radar Principles With Applications To Tracking Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Radar Principles With Applications To Tracking Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Radar Principles with Applications to Tracking Systems

Of related interest … Microwave Passive Direction Finding Stephen E. Lipsky This breakthrough work answers the need of every engineer in search of a comprehensive, single source on DF technology. Microwave Passive Direction Finding succinctly unifies DF theory, provides representative block diagrams of working equipment, and details the methods of calculating and predicting system performance. Sections cover evolution and use of monopulse passive DF receiver theory, design of antenna elements for conformal DF coverage, receiver configurations, DF antenna arrays, computation methods for signal detection, and much more. Never before published material includes new systems concepts such as digital preprocessing, supercommutation, and wide RF bandwidth noise detection methods. With tips on preparing proposals for new business, this reference covers every aspect of the principles and practice of DF technology. 1987 (0 471-83454-8) 298 pp. Radar Principles Nadav Levanon With this first published textbook on the subject, practicing engineers and graduate students will quickly master the basic concepts of radar science. A clear, straightforward introduction to the discipline through an analytical and problem-solving mode, this unique book features mathematical analysis and proofs, fully analyzed examples, and problem sections—all selected from the author’s course assignments. Key topics include propagation, radar cross section, clutter, radar signals, the ambiguity function, measurement accuracy, coherent processing, Synthetic Aperture Radar and monopulse. The text’s tutorial format, consistent terminology, and 141 illustrations (including 3-D plots of ambiguity functions) make it an optimal self-study tool, classroom text, and professional reference. 1988 (0 471-85881-1) 308 pp. Optimal Radar Tracking Systems George Biernson Here is a systematic unveiling of the methods and means underlying the design of radar tracking technology. Topics covered include issues essential to an understanding of Altair radar as well as target-tracking systems. Kalman filter theory, feedback control, modulation and demodulation of signals, digital sampled-data systems, digital computer simulation, statistical analysis of random signals, detection and tracking processes in a radar system are developed first from their rudiments toward a more advanced discussion. Offering a breadth of technical detail unusual in the unclassified literature, this study is of paramount importance to those involved in tracking applications that use optical signal, sonar signal, or RF telemetry signals. 1989 (0 471-50673-7) 560 pp.
Model-Based Processing

A bridge between the application of subspace-based methods for parameter estimation in signal processing and subspace-based system identification in control systems Model-Based Processing: An Applied Subspace Identification Approach provides expert insight on developing models for designing model-based signal processors (MBSP) employing subspace identification techniques to achieve model-based identification (MBID) and enables readers to evaluate overall performance using validation and statistical analysis methods. Focusing on subspace approaches to system identification problems, this book teaches readers to identify models quickly and incorporate them into various processing problems including state estimation, tracking, detection, classification, controls, communications, and other applications that require reliable models that can be adapted to dynamic environments. The extraction of a model from data is vital to numerous applications, from the detection of submarines to determining the epicenter of an earthquake to controlling an autonomous vehicles—all requiring a fundamental understanding of their underlying processes and measurement instrumentation. Emphasizing real-world solutions to a variety of model development problems, this text demonstrates how model-based subspace identification system identification enables the extraction of a model from measured data sequences from simple time series polynomials to complex constructs of parametrically adaptive, nonlinear distributed systems. In addition, this resource features: Kalman filtering for linear, linearized, and nonlinear systems; modern unscented Kalman filters; as well as Bayesian particle filters Practical processor designs including comprehensive methods of performance analysis Provides a link between model development and practical applications in model-based signal processing Offers in-depth examination of the subspace approach that applies subspace algorithms to synthesized examples and actual applications Enables readers to bridge the gap from statistical signal processing to subspace identification Includes appendices, problem sets, case studies, examples, and notes for MATLAB Model-Based Processing: An Applied Subspace Identification Approach is essential reading for advanced undergraduate and graduate students of engineering and science as well as engineers working in industry and academia.
Estimation with Applications to Tracking and Navigation

Author: Yaakov Bar-Shalom
language: en
Publisher: John Wiley & Sons
Release Date: 2004-03-22
Expert coverage of the design and implementation of state estimation algorithms for tracking and navigation Estimation with Applications to Tracking and Navigation treats the estimation of various quantities from inherently inaccurate remote observations. It explains state estimator design using a balanced combination of linear systems, probability, and statistics. The authors provide a review of the necessary background mathematical techniques and offer an overview of the basic concepts in estimation. They then provide detailed treatments of all the major issues in estimation with a focus on applying these techniques to real systems. Other features include: * Problems that apply theoretical material to real-world applications * In-depth coverage of the Interacting Multiple Model (IMM) estimator * Companion DynaEst(TM) software for MATLAB(TM) implementation of Kalman filters and IMM estimators * Design guidelines for tracking filters Suitable for graduate engineering students and engineers working in remote sensors and tracking, Estimation with Applications to Tracking and Navigation provides expert coverage of this important area.