R Programming For Data Analytics

Download R Programming For Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get R Programming For Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Beginner's Guide for Data Analysis using R Programming

R programming is an efficient tool for statistical analysis of data. Data science has become critical to each field and the popularity of R is skyrocketing. Organization as large and diverse as Google, Facebook, Microsoft, Bank of America, Ford Motor Company, Mozilla, Thomas Cook, The New York Times, The National Weather Service, Twitter, ANZ Bank, Uber, Airbnb etc . have turned to R for reporting, analyzing and visualization of data, this book is for students and professionals of Mathematics, Statistics, Physics, Chemistry, Biology, Social Science and Medicine, Business, Engineering, Software, Information Technology, Sales, Bio Informatics, Pharmacy and any one, where data needs to be analyzed and represented graphically.
R Programming for Data Science

Data science has taken the world by storm. Every field of study and area of business has been affected as people increasingly realize the value of the incredible quantities of data being generated. But to extract value from those data, one needs to be trained in the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it an invaluable tool for data scientists around the world. This book is about the fundamentals of R programming. You will get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. With the fundamentals provided in this book, you will have a solid foundation on which to build your data science toolbox.
R Programming: An Approach to Data Analytics

Author: G. Sudhamathy, C. Jothi Venkateswaran
language: en
Publisher: MJP Publisher
Release Date: 2019-06-03
Chapter 1 - Basics of R, Chapter 2 - Data Types in R , Chapter 3 - Data Preparation. Chapter 4 - Graphics using R, Chapter 5 - Statistical Analysis Using R, Chapter 6 - Data Mining Using R, Chapter 7 - Case Studies. Huge volumes of data are being generated by many sources like commercial enterprises, scientific domains and general public daily. According to a recent research, data production will be 44 times greater in 2020 than it was in 2010. Data being a vital resource for business organizations and other domains like education, health, manufacturing etc., its management and analysis is becoming increasingly important. This data, due to its volume, variety and velocity, often referred to as Big Data, also includes highly unstructured data in the form of textual documents, web pages, graphical information and social media comments. Since Big Data is characterised by massive sample sizes, high dimensionality and intrinsic heterogeneity, traditional approaches to data management, visualisation and analytics are no longer satisfactorily applicable. There is therefore an urgent need for newer tools, better frameworks and workable methodologies for such data to be appropriately categorised, logically segmented, efficiently analysed and securely managed. This requirement has resulted in an emerging new discipline of Data Science that is now gaining much attention with researchers and practitioners in the field of Data Analytics.