R For Finite Element Analyses Of Size Dependent Microscale Structures

Download R For Finite Element Analyses Of Size Dependent Microscale Structures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get R For Finite Element Analyses Of Size Dependent Microscale Structures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
R for Finite Element Analyses of Size-dependent Microscale Structures

This book addresses the static and dynamic analysis of linear elastic size-dependent structures based on the modified couple stress theory. It focuses on establishing the governing equations of the size-dependent structures, deriving the associated finite element models, and implementing those models using the R programming language. The implemented functions are employed to develop a special R package (equivalent to a MATLAB toolbox) called microfiniteR for this book. In each chapter, the governing equations are formulated using the variational method, and the behaviour of the structures is examined on the basis of their load-deformation characteristics (in the case of static analyses) and by evaluating their eigenvalues (in the case of dynamics and buckling problems). The first chapter introduces readers to the R programming language, beginning with the resources needed to make use of the language and ending with a list of recommended texts. The remaining chapters cover the requisite linear elastic theory and highlight the implemented R functions. Each chapter concludes with a brief summary and relevant references.
R for Finite Element Analyses of Size-dependent Microscale Structures

This book addresses the static and dynamic analysis of linear elastic size-dependent structures based on the modified couple stress theory. It focuses on establishing the governing equations of the size-dependent structures, deriving the associated finite element models, and implementing those models using the R programming language. The implemented functions are employed to develop a special R package (equivalent to a MATLAB toolbox) called microfiniteR for this book. In each chapter, the governing equations are formulated using the variational method, and the behaviour of the structures is examined on the basis of their load-deformation characteristics (in the case of static analyses) and by evaluating their eigenvalues (in the case of dynamics and buckling problems). The first chapter introduces readers to the R programming language, beginning with the resources needed to make use of the language and ending with a list of recommended texts. The remaining chapters cover the requisite linear elastic theory and highlight the implemented R functions. Each chapter concludes with a brief summary and relevant references.
Practical Finite Element Simulations with SOLIDWORKS 2022

Author: Khameel B. Mustapha
language: en
Publisher: Packt Publishing Ltd
Release Date: 2022-02-14
Harness the power of SOLIDWORKS Simulation for design, assembly, and performance analysis of components Key FeaturesUnderstand the finite element simulation concepts with the help of case studies and detailed explanationsDiscover the features of various SOLIDWORKS element typesPerform structural analysis with isotropic and composite material properties under a variety of loading conditionsBook Description SOLIDWORKS is a dominant computer-aided design (CAD) software for the 3D modeling, designing, and analysis of components. This book helps you get to grips with SOLIDWORKS Simulation, which is a remarkable and integral part of SOLIDWORKS predominantly deployed for advanced product performance assessment and virtual prototyping. With this book, you'll take a hands-on approach to learning SOLIDWORKS Simulation with the help of step-by-step guidelines on various aspects of the simulation workflow. You'll begin by learning about the requirements for effective simulation of parts and components, along with the idealization of physical components and their representation with finite element models. As you progress through the book, you'll find exercises at the end of each chapter, and you'll be able to download the geometry models used in all the chapters from GitHub. Finally, you'll discover how to set up finite element simulations for the static analysis of components under various types of loads, and with different types of materials, from simple isotropic to composite, and different boundary conditions. By the end of this SOLIDWORKS 2022 book, you'll be able to conduct basic and advanced static analyses with SOLIDWORKS Simulation and have practical knowledge of how to best use the family of elements in the SOLIDWORKS Simulation library. What you will learnRun static simulations with truss, beam, shell, and solid element typesDemonstrate static simulations with mixed elementsAnalyze components with point loads, torsional loads, transverse distributed loads, surface pressure loads, and centrifugal speedExplore the analysis of components with isotropic and composite materialsAnalyze members under thermo-mechanical and cyclic loadsDiscover how to minimize simulation errors and perform convergence analysisAcquire practical knowledge of plane elements to reduce computational overheadWho this book is for This book is for engineers and analysts working in the field of aerospace, mechanical, civil, and mechatronics engineering who are looking to explore the simulation capabilities of SOLIDWORKS. Basic knowledge of modeling in SOLIDWORKS or any CAD software is assumed.