R For Data Science Import Tidy Transform Visualize And Model Data Pdf


Download R For Data Science Import Tidy Transform Visualize And Model Data Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get R For Data Science Import Tidy Transform Visualize And Model Data Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

R for Data Science


R for Data Science

Author: Hadley Wickham

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2016-12-12


DOWNLOAD





Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

R for Data Science


R for Data Science

Author: Hadley Wickham

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2016-12-12


DOWNLOAD





Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Beginner's Guide to R Programming


Beginner's Guide to R Programming

Author: Agasti Khatri

language: en

Publisher: Educohack Press

Release Date: 2025-02-20


DOWNLOAD





Discover the world of data analysis with "Beginner's Guide to R Programming." This comprehensive resource is crafted to help individuals learn the R programming language and explore its diverse applications. Whether you're a complete beginner or an experienced analyst, our book offers a structured learning path that starts with the basics and progresses to advanced topics like statistical analysis, data visualization, and machine learning. Each chapter includes practical examples, exercises, and real-world case studies, encouraging hands-on experimentation with R code. You'll delve into data types, functions, data manipulation, statistical analysis, data visualization, and more, building a solid foundation in R programming and data analysis. Complex concepts are explained in clear, easy-to-understand language, with visual aids, code snippets, and step-by-step tutorials to help you grasp key ideas effectively. The book emphasizes practical applications of R in real-world scenarios, showcasing how you can use R to solve problems, analyze data, make informed decisions, and communicate insights. With access to supplementary resources, including downloadable datasets, code samples, and additional exercises, you'll further enhance your learning experience and practice your skills.