R Data Analysis Projects


Download R Data Analysis Projects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get R Data Analysis Projects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

R Data Analysis Projects


R Data Analysis Projects

Author: Gopi Subramanian

language: en

Publisher: Packt Publishing Ltd

Release Date: 2017-11-17


DOWNLOAD





Get valuable insights from your data by building data analysis systems from scratch with R. About This Book A handy guide to take your understanding of data analysis with R to the next level Real-world projects that focus on problems in finance, network analysis, social media, and more From data manipulation to analysis to visualization in R, this book will teach you everything you need to know about building end-to-end data analysis pipelines using R Who This Book Is For If you are looking for a book that takes you all the way through the practical application of advanced and effective analytics methodologies in R, then this is the book for you. A fundamental understanding of R and the basic concepts of data analysis is all you need to get started with this book. What You Will Learn Build end-to-end predictive analytics systems in R Build an experimental design to gather your own data and conduct analysis Build a recommender system from scratch using different approaches Use and leverage RShiny to build reactive programming applications Build systems for varied domains including market research, network analysis, social media analysis, and more Explore various R Packages such as RShiny, ggplot, recommenderlab, dplyr, and find out how to use them effectively Communicate modeling results using Shiny Dashboards Perform multi-variate time-series analysis prediction, supplemented with sensitivity analysis and risk modeling In Detail R offers a large variety of packages and libraries for fast and accurate data analysis and visualization. As a result, it's one of the most popularly used languages by data scientists and analysts, or anyone who wants to perform data analysis. This book will demonstrate how you can put to use your existing knowledge of data analysis in R to build highly efficient, end-to-end data analysis pipelines without any hassle. You'll start by building a content-based recommendation system, followed by building a project on sentiment analysis with tweets. You'll implement time-series modeling for anomaly detection, and understand cluster analysis of streaming data. You'll work through projects on performing efficient market data research, building recommendation systems, and analyzing networks accurately, all provided with easy to follow codes. With the help of these real-world projects, you'll get a better understanding of the challenges faced when building data analysis pipelines, and see how you can overcome them without compromising on the efficiency or accuracy of your systems. The book covers some popularly used R packages such as dplyr, ggplot2, RShiny, and others, and includes tips on using them effectively. By the end of this book, you'll have a better understanding of data analysis with R, and be able to put your knowledge to practical use without any hassle. Style and approach This book takes a unique, learn-as-you-do approach, as you build on your understanding of data analysis progressively with each project. This book is designed in a way that implementing each project will empower you with a unique skill set, and enable you to implement the next project more confidently.

Modern Statistics with R


Modern Statistics with R

Author: Måns Thulin

language: en

Publisher: CRC Press

Release Date: 2024-08-20


DOWNLOAD





The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling – importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis – using visualisations and multivariate techniques to explore datasets. Statistical inference – modern methods for testing hypotheses and computing confidence intervals. Predictive modelling – regression models and machine learning methods for prediction, classification, and forecasting. Simulation – using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics – ethical issues and good statistical practice. R programming – writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

An Introductory Guide to R


An Introductory Guide to R

Author: Eric L. Einspruch

language: en

Publisher: Guilford Publications

Release Date: 2022-07-13


DOWNLOAD





A friendly, straightforward guide that does not assume knowledge of programming, this book helps new R users hit the ground running. Eric L. Einspruch provides an overview of the software and shows how to download and install R, RStudio, and R packages. Featuring example code, screenshots, tips, learning exercises, and worked-through examples of statistical techniques, the book demonstrates the capabilities and nuances of these powerful free statistical analysis and data visualization tools. Fundamental aspects of data wrangling, analysis, visualization, and reporting are introduced, using both Base R and Tidyverse approaches. Einspruch emphasizes processes that support research reproducibility, such as use of comments to document R code and use of R Markdown capabilities. The book also helps readers navigate the vast array of R resources available to further develop their skills.