Quilts Central Extensions Braid Actions And Finite Groups

Download Quilts Central Extensions Braid Actions And Finite Groups PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quilts Central Extensions Braid Actions And Finite Groups book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quilts: Central Extensions, Braid Actions, and Finite Groups

Quilts are 2-complexes used to analyze actions and subgroups of the 3-string braid group and similar groups. This monograph establishes the fundamentals of quilts and discusses connections with central extensions, braid actions, and finite groups. Most results have not previously appeared in a widely available form, and many results appear in print for the first time. This monograph is accessible to graduate students, as a substantial amount of background material is included. The methods and results may be relevant to researchers interested in infinite groups, moonshine, central extensions, triangle groups, dessins d'enfants, and monodromy actions of braid groups.
Characters and Cyclotomic Fields in Finite Geometry

This monograph contributes to the existence theory of difference sets, cyclic irreducible codes and similar objects. The new method of field descent for cyclotomic integers of presribed absolute value is developed. Applications include the first substantial progress towards the Circulant Hadamard Matrix Conjecture and Ryser`s conjecture since decades. It is shown that there is no Barker sequence of length l with 13
hp-Finite Element Methods for Singular Perturbations

Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.