Quaternionic De Branges Spaces And Characteristic Operator Function

Download Quaternionic De Branges Spaces And Characteristic Operator Function PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quaternionic De Branges Spaces And Characteristic Operator Function book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quaternionic de Branges Spaces and Characteristic Operator Function

This work contributes to the study of quaternionic linear operators. This study is a generalization of the complex case, but the noncommutative setting of quaternions shows several interesting new features, see e.g. the so-called S-spectrum and S-resolvent operators. In this work, we study de Branges spaces, namely the quaternionic counterparts of spaces of analytic functions (in a suitable sense) with some specific reproducing kernels, in the unit ball of quaternions or in the half space of quaternions with positive real parts. The spaces under consideration will be Hilbert or Pontryagin or Krein spaces. These spaces are closely related to operator models that are also discussed. The focus of this book is the notion of characteristic operator function of a bounded linear operator A with finite real part, and we address several questions like the study of J-contractive functions, where J is self-adjoint and unitary, and we also treat the inverse problem, namely to characterize which J-contractive functions are characteristic operator functions of an operator. In particular, we prove the counterpart of Potapov's factorization theorem in this framework. Besides other topics, we consider canonical differential equations in the setting of slice hyperholomorphic functions and we define the lossless inverse scattering problem. We also consider the inverse scattering problem associated with canonical differential equations. These equations provide a convenient unifying framework to discuss a number of questions pertaining, for example, to inverse scattering, non-linear partial differential equations and are studied in the last section of this book.
Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes

This book presents a new theory for evolution operators and a new method for defining fractional powers of vector operators. This new approach allows to define new classes of fractional diffusion and evolution problems. These innovative methods and techniques, based on the concept of S-spectrum, can inspire researchers from various areas of operator theory and PDEs to explore new research directions in their fields. This monograph is the natural continuation of the book: Spectral Theory on the S-Spectrum for Quaternionic Operators by Fabrizio Colombo, Jonathan Gantner, and David P. Kimsey (Operator Theory: Advances and Applications, Vol. 270).
Quaternionic Hilbert Spaces and Slice Hyperholomorphic Functions

The purpose of the present book is to develop the counterparts of Banach and Hilbert spaces in the setting of slice hyperholomorphic functions. Banach and Hilbert spaces of analytic functions, in one or several complex variables, play an important role in analysis and related fields. Besides their intrinsic interest, such spaces have numerous applications. The book is divided into three parts. In the first part, some foundational material on quaternionic functions and functional analysis are introduced. The second part is the core of the book and contains various types of functions spaces ranging from the Hardy spaces, also in the fractional case, to the Fock space extended to the case of quaternions. The third and final part present some further generalization. Researchers in functional analysis and hypercomplex analysis will find this book a key contribution to their field, but also researchers in mathematical physics, especially in quantum mechanics, will benefit from the insights presented.