Quantum Theory Informational Foundations And Foils

Download Quantum Theory Informational Foundations And Foils PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantum Theory Informational Foundations And Foils book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quantum Theory: Informational Foundations and Foils

This book provides the first unified overview of the burgeoning research area at the interface between Quantum Foundations and Quantum Information. Topics include: operational alternatives to quantum theory, information-theoretic reconstructions of the quantum formalism, mathematical frameworks for operational theories, and device-independent features of the set of quantum correlations. Powered by the injection of fresh ideas from the field of Quantum Information and Computation, the foundations of Quantum Mechanics are in the midst of a renaissance. The last two decades have seen an explosion of new results and research directions, attracting broad interest in the scientific community. The variety and number of different approaches, however, makes it challenging for a newcomer to obtain a big picture of the field and of its high-level goals. Here, fourteen original contributions from leading experts in the field cover some of the most promising research directions that have emerged in the new wave of quantum foundations. The book is directed at researchers in physics, computer science, and mathematics and would be appropriate as the basis of a graduate course in Quantum Foundations.
Quantum Probability and Randomness

The last few years have been characterized by a tremendous development of quantum information and probability and their applications, including quantum computing, quantum cryptography, and quantum random generators. In spite of the successful development of quantum technology, its foundational basis is still not concrete and contains a few sandy and shaky slices. Quantum random generators are one of the most promising outputs of the recent quantum information revolution. Therefore, it is very important to reconsider the foundational basis of this project, starting with the notion of irreducible quantum randomness. Quantum probabilities present a powerful tool to model uncertainty. Interpretations of quantum probability and foundational meaning of its basic tools, starting with the Born rule, are among the topics which will be covered by this issue. Recently, quantum probability has started to play an important role in a few areas of research outside quantum physics—in particular, quantum probabilistic treatment of problems of theory of decision making under uncertainty. Such studies are also among the topics of this issue.
Quantum Information and Foundations

Quantum information has dramatically changed information science and technology, looking at the quantum nature of the information carrier as a resource for building new information protocols, designing radically new communication and computation algorithms, and ultra-sensitive measurements in metrology, with a wealth of applications. From a fundamental perspective, this new discipline has led us to regard quantum theory itself as a special theory of information, and has opened routes for exploring solutions to the tension with general relativity, based, for example, on the holographic principle, on non-causal variations of the theory, or else on the powerful algorithm of the quantum cellular automaton, which has revealed new routes for exploring quantum fields theory, both as a new microscopic mechanism on the fundamental side, and as a tool for efficient physical quantum simulations for practical purposes. In this golden age of foundations, an astonishing number of new ideas, frameworks, and results, spawned by the quantum information theory experience, have revolutionized the way we think about the subject, with a new research community emerging worldwide, including scientists from computer science and mathematics.