Quantum Theory Concepts And Methods


Download Quantum Theory Concepts And Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantum Theory Concepts And Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Quantum Theory: Concepts and Methods


Quantum Theory: Concepts and Methods

Author: A. Peres

language: en

Publisher: Springer Science & Business Media

Release Date: 1995-09-30


DOWNLOAD





This book will be useful to anyone who wants to understand the use of quantum theory for the description of physical processes. It is a graduate level text, ideal for independent study, and includes numerous figures, exercises, bibliographical references, and even some computer programs. The first chapters introduce formal tools: the mathematics are precise, but not excessively abstract. The physical interpretation too is rigorous. It makes no use of the uncertainty principle of other ill-defined notions. The central part of the book is devoted to Bell's theorem and to the Kochen-Specker theorem. It is here that quantum phenomena depart most radically from classical physics. There has recently been considerable progress on these issues, and the latest developments have been included. The final chapters discuss further topics of current research: spacetime symmetries, quantum thermodynamics and information theory, semiclassical methods, irreversibility, quantum chaos, and especially the measuring process. In particular, it is shown how modern techniques allow the extraction of more information from a physical system than traditional measurement methods. For physicists, mathematicians and philosophers of science with an interest in the applications and foundations of quantum theory. The volume is suitable as a supplementary graduate textbook.

Quantum Theory: Concepts and Methods


Quantum Theory: Concepts and Methods

Author: A. Peres

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-06-01


DOWNLOAD





There are many excellent books on quantum theory from which one can learn to compute energy levels, transition rates, cross sections, etc. The theoretical rules given in these books are routinely used by physicists to compute observable quantities. Their predictions can then be compared with experimental data. There is no fundamental disagreement among physicists on how to use the theory for these practical purposes. However, there are profound differences in their opinions on the ontological meaning of quantum theory. The purpose of this book is to clarify the conceptual meaning of quantum theory, and to explain some of the mathematical methods which it utilizes. This text is not concerned with specialized topics such as atomic structure, or strong or weak interactions, but with the very foundations of the theory. This is not, however, a book on the philosophy of science. The approach is pragmatic and strictly instrumentalist. This attitude will undoubtedly antagonize some readers, but it has its own logic: quantum phenomena do not occur in a Hilbert space, they occur in a laboratory.

Mathematical Concepts of Quantum Mechanics


Mathematical Concepts of Quantum Mechanics

Author: Stephen J. Gustafson

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-09-24


DOWNLOAD





The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.