Quantum Mesoscopic Phenomena And Mesoscopic Devices In Microelectronics

Download Quantum Mesoscopic Phenomena And Mesoscopic Devices In Microelectronics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantum Mesoscopic Phenomena And Mesoscopic Devices In Microelectronics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics

Author: Igor O. Kulik
language: en
Publisher: Springer Science & Business Media
Release Date: 2000
Quantum mechanical laws are well documented at the level of a single or a few atoms and are here extended to systems containing 102 to 1010 electrons - still much smaller than the usual macroscopic objects, but behaving in a manner similar to a single atom. Besides the purely theoretical interest, such systems pose a challenge to the achievement of the ultimate microelectronic applications. The present volume presents an up-to-date account of the physics, technology and expected applications of quantum effects in solid-state mesoscopic structures. Physical phenomena include the Aharonov-Bohm effect, persistent currents, Coulomb blockade and Coulomb oscillations in single electron devices, Andreev reflections and the Josephson effect in superconductor/normal/superconductor systems, shot noise suppression in microcontacts and contact resistance quantisation, and overall quantum coherence in mesoscopic and nanoscopic structures related to the emerging physics of quantum computation in the solid-state environment.
Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics

Author: Igor O. Kulik
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Quantum mechanical laws are well documented at the level of a single or a few atoms and are here extended to systems containing 102 to 1010 electrons - still much smaller than the usual macroscopic objects, but behaving in a manner similar to a single atom. Besides the purely theoretical interest, such systems pose a challenge to the achievement of the ultimate microelectronic applications. The present volume presents an up-to-date account of the physics, technology and expected applications of quantum effects in solid-state mesoscopic structures. Physical phenomena include the Aharonov-Bohm effect, persistent currents, Coulomb blockade and Coulomb oscillations in single electron devices, Andreev reflections and the Josephson effect in superconductor/normal/superconductor systems, shot noise suppression in microcontacts and contact resistance quantisation, and overall quantum coherence in mesoscopic and nanoscopic structures related to the emerging physics of quantum computation in the solid-state environment.
Quantum Phenomena in Mesoscopic Systems

This book is a snapshot of the vision shared by outstanding scientists on the key theoretical and experimental issues in Mesoscopic Physics. Quantum properties of electrons in solid state devices and transport in semiconducting and superconducting low-dimensional systems, are discussed, as well as the basis of quantum computing (entanglement, noise decoherence and read-out). Each chapter collects the material presented at a Varenna School course of last year, by leading experts in the field. The reader gets a flavor, how theorists and experimentalists are paving the way to the physical realization of solid state qubits, the basic units of the new logic and memory elements for quantum processing. He will be surprised in finding that mesoscopic solid state devices, which were invented just yesterday ( think of the Single Electron Transistor, or the Cooper Pair Box) are currently used as charge-sensing applications in the equipment of frontier research laboratories. These devices contribute as probing systems to produce evidence on still unsettled questions in topics like the metal-insulator transition in disordered two dimensional systems, quantum Hall conductance in heterostructures, or Kondo conductance in quantum dots.