Quantum Heterostructures

Download Quantum Heterostructures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantum Heterostructures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quantum Heterostructures

Author: Vladimir Vasilʹevich Mitin
language: en
Publisher: Cambridge University Press
Release Date: 1999-07-13
Quantum Heterostructures provides a detailed description of the key physical and engineering principles of quantum semiconductor heterostructures. Blending important concepts from physics, materials science, and electrical engineering, it also explains clearly the behavior and operating features of modern microelectronic and optoelectronic devices. The authors begin by outlining the trends that have driven development in this field, most importantly the need for high-performance devices in computer, information, and communications technologies. They then describe the basics of quantum nanoelectronics, including various transport mechanisms. In the latter part of the book, they cover novel microelectronic devices, and optical devices based on quantum heterostructures. The book contains many homework problems and is suitable as a textbook for undergraduate and graduate courses in electrical engineering, physics, or materials science. It will also be of great interest to those involved in research or development in microelectronic or optoelectronic devices.
High-Speed Heterostructure Devices

Author: Patrick Roblin
language: en
Publisher: Cambridge University Press
Release Date: 2002-03-07
Fuelled by rapid growth in communications technology, silicon heterostructures and related high-speed semiconductors are spearheading the drive toward smaller, faster and lower power devices. High-Speed Heterostructure Devices is a textbook on modern high-speed semiconductor devices intended for both graduate students and practising engineers. This book is concerned with the underlying physics of heterostructures as well as some of the most recent techniques for modeling and simulating these devices. Emphasis is placed on heterostructure devices of the immediate future such as the MODFET, HBT and RTD. The principles of operation of other devices such as the Bloch Oscillator, RITD, Gunn diode, quantum cascade laser and SOI and LD MOSFETs are also introduced. Initially developed for a graduate course taught at Ohio State University, the book comes with a complete set of homework problems and a web link to MATLAB programs supporting the lecture material.
Characterization of Semiconductor Heterostructures and Nanostructures

Characterization of Semiconductor Heterostructures and Nanostructures is structured so that each chapter is devoted to a specific characterization technique used in the understanding of the properties (structural, physical, chemical, electrical etc..) of semiconductor quantum wells and superlattices. An additional chapter is devoted to ab initio modeling. The book has two basic aims. The first is educational, providing the basic concepts of each of the selected techniques with an approach understandable by advanced students in Physics, Chemistry, Material Science, Engineering, Nanotechnology. The second aim is to provide a selected set of examples from the recent literature of the TOP results obtained with the specific technique in understanding the properties of semiconductor heterostructures and nanostructures. Each chapter has this double structure: the first part devoted to explain the basic concepts, and the second to the discussion of the most peculiar and innovative examples. The topic of quantum wells, wires and dots should be seen as a pretext of applying top level characterization techniques in understanding the structural, electronic etc properties of matter at the nanometer (and even sub-nanometer) scale. In this respect it is an essential reference in the much broader, and extremely hot, field of Nanotechnology. Comprehensive collection of the most powerful characterization techniques for semiconductors heterostructures and nanostructures Most of the chapters are authored by scientists that are world-wide among the top-ten in publication ranking of the specific field Each chapter starts with a didactic introduction on the technique The second part of each chapters deals with a selection of top examples highlighting the power of the specific technique to analyse the properties of semiconductors heterostructures and nanostructures