Quantum Electrodynamics With Unstable Vacuum


Download Quantum Electrodynamics With Unstable Vacuum PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantum Electrodynamics With Unstable Vacuum book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Quantum Electrodynamics


Quantum Electrodynamics

Author: Efim Samoĭlovich Fradkin

language: en

Publisher: Springer

Release Date: 1991


DOWNLOAD





This book contains a systematic analysis of the formalisms of quantum electro- dynamics in the presence of an intense external field able to create pairs from the vacuum, and thereby violate the stability of the latter. The approach developed is not specific to quantum electrodynamics, and can equally well be applied to any quantum field theory with an unstable vacuum. It should be noted that only macroscopic external fields are considered, whereas problems associated with the superstrong Coulomb (micro) field are not treated. As a rule, the discussion is confined to those details of the formalism and calculations that are specific to the instability property. For instance, renormalization is not discussed here since, in practical calculations, it is carried out according to standard methods. The presentation is based mainly on original research undertaken by the authors. Chapter 1 contains a general introduction to the problem. It also presents some standard information on quantum electrodynamics, which will be used later in the text. In addition, an interpretation of the concept of an external field is given, and the problems that arise when one tries to keep the interaction with the external field exactly are discussed. In Chapter 2, the perturbation expansion in powers of the radiative interac- tion is developed for the matrix elements of transition processes, taking the arbitrary external field into account exactly.

Quantum Electrodynamics


Quantum Electrodynamics

Author: E.S. Fradkin

language: en

Publisher: Springer

Release Date: 1991


DOWNLOAD





This book contains a systematic analysis of the formalisms of quantum electro dynamics in the presence of an intense external field able to create pairs from the vacuum, and thereby violate the stability of the latter. The approach developed is not specific to quantum electrodynamics, and can equally well be applied to any quantum field theory with an unstable vacuum. It should be noted that only macroscopic external fields are considered, whereas problems associated with the superstrong Coulomb (micro) field are not treated. As a rule, the discussion is confined to those details of the formalism and calculations that are specific to the instability property. For instance, renormalization is not discussed here since, in practical calculations, it is carried out according to standard methods. The presentation is based mainly on original research undertaken by the authors. Chapter 1 contains a general introduction to the problem. It also presents some standard information on quantum electrodynamics, which will be used later in the text. In addition, an interpretation of the concept of an external field is given, and the problems that arise when one tries to keep the interaction with the external field exactly are discussed. In Chapter 2, the perturbation expansion in powers of the radiative interac tion is developed for the matrix elements of transition processes, taking the arbitrary external field into account exactly.

Quantum Electrodynamics of Strong Fields


Quantum Electrodynamics of Strong Fields

Author: Walter Greiner

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The fundamental goal of physics is an understanding of the forces of nature in their simplest and most general terms. Yet there is much more involved than just a basic set of equations which eventually has to be solved when applied to specific problems. We have learned in recent years that the structure of the ground state of field theories (with which we are generally concerned) plays an equally funda mental role as the equations of motion themselves. Heisenberg was probably the first to recognize that the ground state, the vacuum, could acquire certain prop erties (quantum numbers) when he devised a theory of ferromagnetism. Since then, many more such examples are known in solid state physics, e. g. supercon ductivity, superfluidity, in fact all problems concerned with phase transitions of many-body systems, which are often summarized under the name synergetics. Inspired by the experimental observation that also fundamental symmetries, such as parity or chiral symmetry, may be violated in nature, it has become wide ly accepted that the same field theory may be based on different vacua. Practical ly all these different field phases have the status of more or less hypothetical models, not (yet) directly accessible to experiments. There is one magnificent ex ception and this is the change of the ground state (vacuum) of the electron-posi tron field in superstrong electric fields.