Quantization And Non Holomorphic Modular Forms

Download Quantization And Non Holomorphic Modular Forms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantization And Non Holomorphic Modular Forms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quantization and Non-holomorphic Modular Forms

This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z).
Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms

Author: André Unterberger
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-08-06
Pseudodifferential analysis, introduced in this book in a way adapted to the needs of number theorists, relates automorphic function theory in the hyperbolic half-plane Π to automorphic distribution theory in the plane. Spectral-theoretic questions are discussed in one or the other environment: in the latter one, the problem of decomposing automorphic functions in Π according to the spectral decomposition of the modular Laplacian gives way to the simpler one of decomposing automorphic distributions in R2 into homogeneous components. The Poincaré summation process, which consists in building automorphic distributions as series of g-transforms, for g E SL(2;Z), of some initial function, say in S(R2), is analyzed in detail. On Π, a large class of new automorphic functions or measures is built in the same way: one of its features lies in an interpretation, as a spectral density, of the restriction of the zeta function to any line within the critical strip. The book is addressed to a wide audience of advanced graduate students and researchers working in analytic number theory or pseudo-differential analysis.