Quantitative Pareto Analysis By Cone Separation Technique

Download Quantitative Pareto Analysis By Cone Separation Technique PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantitative Pareto Analysis By Cone Separation Technique book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quantitative Pareto Analysis by Cone Separation Technique

Author: Ignacy Kaliszewski
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This work results from my interest in the field of vector optimiza tion. I stumbled first upon this subject in 1982 during my six months visit to the Istituto di Elaborazione della Informazione in Pisa, Italy, supported by a fellowship of the (Italian) Consiglio Nationale delle Richerche. I was attracted then by a gap between vector optimiza tion used to serve as a formal model for multiple objective decision problems and the decision problems themselves, the gap nonexis tent in scalar optimization. Roughly speaking, vector optimization provides methods for ranking decisions according to a partial order whereas decision making requires a linear ordering of decisions. The book deals with vector optimization. However, vector opti mization is considered here not only as a topic of research in itself but also as a basic tool for decision making. In consequence, all results presented here are aimed at exploiting and understanding the structure of elements (decisions) framed by a vector optimiza tion problem with the underlying assumption that the results should be interpretable in terms and applicable in the context of decision making. Computational tractability of results is therefore of special concern throughout this book. A unified framework for presentation is offered by the Cone Sep aration Technique (CST) founded on the notion of cone separation.
Many-Criteria Optimization and Decision Analysis

This book presents the state-of-the-art, current challenges, and future perspectives for the field of many-criteria optimization and decision analysis. The field recognizes that real-life problems often involve trying to balance a multiplicity of considerations simultaneously – such as performance, cost, risk, sustainability, and quality. The field develops theory, methods and tools that can support decision makers in finding appropriate solutions when faced with many (typically more than three) such criteria at the same time. The book consists of two parts: key research topics, and emerging topics. Part I begins with a general introduction to many-criteria optimization, perspectives from research leaders in real-world problems, and a contemporary survey of the attributes of problems of this kind. This part continues with chapters on fundamental aspects of many-criteria optimization, namely on order relations, quality measures, benchmarking, visualization, and theoretical considerations. Part II offers more specialized chapters on correlated objectives, heterogeneous objectives, Bayesian optimization, and game theory. Written by leading experts across the field of many-criteria optimization, this book will be an essential resource for researchers in the fields of evolutionary computing, operations research, multiobjective optimization, and decision science.
Multiple Criteria Decision Analysis

In two volumes, this new edition presents the state of the art in Multiple Criteria Decision Analysis (MCDA). Reflecting the explosive growth in the field seen during the last several years, the editors not only present surveys of the foundations of MCDA, but look as well at many new areas and new applications. Individual chapter authors are among the most prestigious names in MCDA research, and combined their chapters bring the field completely up to date. Part I of the book considers the history and current state of MCDA, with surveys that cover the early history of MCDA and an overview that discusses the “pre-theoretical” assumptions of MCDA. Part II then presents the foundations of MCDA, with individual chapters that provide a very exhaustive review of preference modeling, along with a chapter devoted to the axiomatic basis of the different models that multiple criteria preferences. Part III looks at outranking methods, with three chapters that consider the ELECTRE methods, PROMETHEE methods, and a look at the rich literature of other outranking methods. Part IV, on Multiattribute Utility and Value Theories (MAUT), presents chapters on the fundamentals of this approach, the very well known UTA methods, the Analytic Hierarchy Process (AHP) and its more recent extension, the Analytic Network Process (ANP), as well as a chapter on MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique). Part V looks at Non-Classical MCDA Approaches, with chapters on risk and uncertainty in MCDA, the decision rule approach to MCDA, the fuzzy integral approach, the verbal decision methods, and a tentative assessment of the role of fuzzy sets in decision analysis. Part VI, on Multiobjective Optimization, contains chapters on recent developments of vector and set optimization, the state of the art in continuous multiobjective programming, multiobjective combinatorial optimization, fuzzy multicriteria optimization, a review of the field of goal programming, interactive methods for solving multiobjective optimization problems, and relationships between MCDA and evolutionary multiobjective optimization (EMO). Part VII, on Applications, selects some of the most significant areas, including contributions of MCDA in finance, energy planning problems, telecommunication network planning and design, sustainable development, and portfolio analysis. Finally, Part VIII, on MCDM software, presents well known MCDA software packages.